
Web Scaling Frameworks
Building scalable, high-performance, portable and

interoperable Web Services for the Cloud

Thomas Fankhauser

Thesis submitted in partial fulfilment of the requirements
of the University of the West of Scotland
for the award of Doctor of Philosophy

In collaboration with Stuttgart Media University

April 2016

Table of Contents

Abstract . xiii
Declaration . xiv
Acknowledgements . xv
List of Publications . xvi
1. Introduction . 1

1.1 Overview . 1
1.2 Research Aim and Objectives . 3
1.3 Project Overview and Technical Contributions 4
1.4 Research Methodology . 7
1.5 Thesis Outline . 7

2. Background and Evaluation Platform 10
2.1 Overview . 10
2.2 The Web . 10

2.2.1 Hypertext Transfer Protocol 10
2.2.1.1 HTTP Request . 10
2.2.1.2 HTTP Response . 11

2.3 Web Sites . 12
2.4 Web Applications . 12

2.4.1 Back End . 13
2.4.2 Front End . 13
2.4.3 Web Evolution . 13

2.5 Web Services . 13
2.5.1 Service Oriented Architecture 14
2.5.2 Architectural Styles . 14

2.5.2.1 Application Specific 14
2.5.2.2 Representational State Transfer 14

2.6 Web Scaling . 15
2.6.1 Horizontal and Vertical Scaling 15
2.6.2 Cloud Computing . 16

2.7 Web Architecture Patterns . 16
2.7.1 Monolithic Architecture . 16
2.7.2 Microservice Architecture . 16
2.7.3 Traditional Approach . 17

2.8 Pi-One: Evaluation Platform . 17
2.8.1 Hardware and Software Construction 17
2.8.2 Evaluation Setup . 18
2.8.3 Influence of Programming Framework 18

ii

2.8.4 Influence of Hardware . 18
2.8.5 Results . 19

2.9 Summary . 19
3. Related Work and Theoretical Foundations 20

3.1 Overview . 20
3.2 Web Scaling Frameworks . 20

3.2.1 Platforms and Frameworks 21
3.2.2 Auto Scaling Features of Cloud Providers 22
3.2.3 Cloud Application Design Patterns 22

3.3 Request Flow . 23
3.3.1 Caching Strategies and Policies 23
3.3.2 Performance Modelling . 24
3.3.3 Event Stream Processing Platforms and Frameworks 25

3.4 Resource Dependency Processing 26
3.4.1 Job and Workflow Scheduling 26
3.4.2 Graph Processing Platforms 28
3.4.3 Reactive Programming . 28
3.4.4 Web Service Measures . 28
3.4.5 Traffic Modelling . 29

3.5 Cloud Portability and Interoperability 29
3.5.1 Portability and Interoperability 29
3.5.2 Cloud Application Deployment and Management Platforms . 31
3.5.3 Containers and Cluster Orchestration Frameworks 32

3.6 Open Research Questions . 32
3.7 Theoretical Foundations . 33
3.8 Summary . 34

4. Conceptual Architecture Design . 35
4.1 Overview . 35
4.2 Proposed Architecture Overview and Design Goals 35

4.2.1 Design Goals . 35
4.2.2 Proposed Architecture Overview 36

4.3 Applied Cloud Architecture Design Patterns 36
4.3.1 Provider Adapter Pattern . 36
4.3.2 Managed Configuration Pattern 37
4.3.3 Elastic Manager Pattern . 37
4.3.4 Command Query Responsibility Segregation and Flux Pattern 37
4.3.5 Watchdog Pattern . 38
4.3.6 Microservice Architecture Pattern 38

4.4 Modules Specification . 38
4.4.1 Storage Module . 38

iii

4.4.2 Metrics Module . 39
4.4.3 Watcher Module . 39
4.4.4 Resilience Module . 40
4.4.5 Actions Module . 40
4.4.6 Provision Module . 40
4.4.7 Interface Module . 41
4.4.8 Worker Module . 41

4.5 Scaling Parameters . 41
4.5.1 Component Parameters . 41
4.5.2 System Parameters . 43
4.5.3 Traffic Parameters . 43

4.6 Minimum Viable Interfaces . 43
4.6.1 Component Interface . 44

4.6.1.1 Metrics Interface . 44
4.6.1.2 Provision Interface 46

4.6.2 Framework Interface . 47
4.6.2.1 Configuration Interface 47
4.6.2.2 Parameter Interface 49
4.6.2.3 Action Interface . 49

4.6.3 Application Interface . 50
4.6.3.1 Deployment Interface 50
4.6.3.2 Request Flow Interface 50

4.7 Discussion . 51
4.8 Summary . 52

5. Request Flow Optimisation Scheme . 53
5.1 Overview . 53
5.2 Motivations and Objectives . 53
5.3 Permanent Resource Storage and Management Pattern 54

5.3.1 Motivation . 54
5.3.2 Proposed Pattern . 55
5.3.3 Advantages . 56

5.4 Proposed Scheme Implementation 57
5.4.1 Traditional and Proposed Scheme Comparison 57
5.4.2 Request Flow . 58
5.4.3 Resource and Dependency Processing Scheme 58

5.4.3.1 Synchronous and Asynchronous Processing Phase 58
5.4.3.2 Processing Scheme 59

5.4.4 Resource Interface . 60
5.4.4.1 Storage Interface . 60
5.4.4.2 Meta Interface . 60

iv

5.5 Analytical Performance Modelling . 61
5.5.1 Performance Goals . 61
5.5.2 Component Models . 62

5.5.2.1 Parameters . 62
5.5.2.2 Delay Factors . 62
5.5.2.3 Maximum Request Flow 64
5.5.2.4 Machines for Target Flow 64

5.5.3 Composition Models . 64
5.5.3.1 Parameters . 64
5.5.3.2 Components and Subsystems 64
5.5.3.3 Maximum Request Flow 65
5.5.3.4 Machines for Target Flow 66
5.5.3.5 Linear Regression for Machines for Target Flow . . 67

5.5.4 Performance Comparison . 68
5.5.4.1 Relative Average Machine Reduction 68
5.5.4.2 Break-Even Point for Dependency Processing . . . 68

5.5.5 Performance Optimisation . 69
5.5.5.1 Optimal Concurrency Range 69
5.5.5.2 Performance-Concurrency-Width Triplet 70

5.6 Empirical Performance Evaluation 70
5.6.1 Component Models Evaluation 71

5.6.1.1 Metrics . 71
5.6.1.2 Network Delay . 71
5.6.1.3 Request Size Delay 72
5.6.1.4 Processing Delay 72

5.6.2 Composition Models Evaluation 72
5.6.2.1 Chained Composition 72
5.6.2.2 Distributed Composition 73

5.6.3 Real-World Application Evaluation 73
5.6.3.1 Trip Planner . 73
5.6.3.2 Social Network . 74
5.6.3.3 FIFA Soccer Worldcup 98 Website 74
5.6.3.4 Extracted Application Metrics 74
5.6.3.5 Results . 75

5.7 Discussion . 75
5.8 Summary . 76

6. Resource Dependency Processing . 78
6.1 Overview . 78
6.2 Motivations and Objectives . 78
6.3 Resource Dependency Measurements 80

v

6.3.1 Resource Vertices . 80
6.3.1.1 Processing & Read Vertices 80

6.3.2 Dependency Edges . 81
6.3.3 Graph Measures . 81

6.3.3.1 Dependency Depth 81
6.3.3.2 Dependency Degree 81
6.3.3.3 Read-Processing Vertex Ratio 82
6.3.3.4 Cluster Count . 82
6.3.3.5 Cluster Size . 82
6.3.3.6 Sparsity . 82

6.4 Processing Algorithms . 82
6.4.1 Evaluation . 83
6.4.2 Shortest-Path Approach . 83

6.4.2.1 Results . 84
6.4.3 Longest-Path Approach . 84
6.4.4 A Forest of Processing Trees 85

6.4.4.1 Time Complexity . 85
6.4.5 Forest of Processing Trees Extraction Algorithms 85

6.4.5.1 Negated Bellman-Ford 86
6.4.5.2 Topological Sort with Dynamic Programming 86
6.4.5.3 Results . 88

6.5 Dependency Analysis . 89
6.5.1 Correlations with Processing Duration 89

6.5.1.1 Edge Count . 89
6.5.1.2 Dependency Degree 90
6.5.1.3 Dependency Depth 90
6.5.1.4 Cluster Count . 90
6.5.1.5 Cluster Size . 90

6.5.2 Regressions for Processing Duration 91
6.5.2.1 Cluster Size Based 91
6.5.2.2 Depth Based . 91

6.6 Service Generation . 91
6.6.1 Parameters . 92

6.6.1.1 Dependency Graph Based 92
6.6.1.2 Traffic Based . 93

6.6.2 Service Based Graph Generation 93
6.6.2.1 Service Structure Graphs 93
6.6.2.2 Parameter Extraction 94
6.6.2.3 Algorithm . 95

6.6.3 Fuzzy Graph Generation . 96

vi

6.7 Performance Modelling . 97
6.7.1 Processing Duration . 97

6.7.1.1 Traditional Processing 97
6.7.1.2 Resource Dependency Processing 97

6.7.2 Processing Duration Delta . 98
6.7.3 Relative Performance Improvement 98
6.7.4 Break-Even Points for Processing Duration 99

6.8 Performance Evaluation . 99
6.8.1 Aggregated Performance . 99

6.8.1.1 Implementations . 100
6.8.1.2 Request Modes . 101
6.8.1.3 Empirical Data and Modelled Data 101
6.8.1.4 Combined Case Results 102
6.8.1.5 Best Case Results 102
6.8.1.6 Worst Case Results 102
6.8.1.7 Average Case Results 102
6.8.1.8 Model Fits . 103

6.8.2 Structure Based Performance 103
6.8.2.1 Performance Results 103
6.8.2.2 Mapping to Real-World Structures 104

6.9 Discussion . 104
6.10 Summary . 106

7. Cloud Portable and Interoperable Prototype Implementation and
Evaluation .107
7.1 Overview . 107
7.2 Motivations and Objectives . 107
7.3 Prototypical Implementation . 108

7.3.1 Cloud Providers with Linux Container Support 108
7.3.1.1 Docker Container Engine 108
7.3.1.2 Amazon Elastic Container Service (ECS) 109
7.3.1.3 Google Container Engine 110
7.3.1.4 IBM Bluemix Containers 111

7.3.2 Prototype Components . 112
7.3.3 Prototype Modules . 113

7.4 Web Application Integration . 113
7.4.1 LinkR Web Application . 114
7.4.2 Adaptations for Integration into a WSF 115
7.4.3 Service Structure Graph Analysis 116
7.4.4 Dependency Graph Injection and Resource Push 116
7.4.5 Resource Index Generation 117

vii

7.5 Processing Cost and Storage Space Modelling 118
7.5.1 Processing Cost . 118
7.5.2 Break-Even Point for Processing Cost 119
7.5.3 Storage Space . 119

7.6 Processing Cost and Storage Space Evaluation 121
7.6.1 Evaluation Data . 121
7.6.2 Results . 121

7.7 Discussion . 123
7.8 Summary . 124

8. Conclusions and Future Work .127
8.1 Overview . 127
8.2 Proposed Solutions . 127
8.3 Major Findings . 129
8.4 Contributions to Knowledge . 130
8.5 Limitations . 131
8.6 Future Work . 132

List of References .134
Appendix A - List of Acronyms/Abbreviations144
Appendix B - Awards and Certificates .147
Appendix C - Pi-One Evaluation Cluster148

viii

List of Figures

Figure 1.1 The optimisation of a mobile advertising platform served as ini-
tial motivation for the project. 4

Figure 1.2 Overview of thesis outline with chapters, work packages and
publications. 8

Figure 2.1 Evolution of the Web from document based web sites to inter-
active web applications requesting resources from web services. 12

Figure 2.2 Representational State Transfer (REST) architectural style. . . . 14
Figure 2.3 Horizontal and vertical web scaling of servers for multiple re-

questing clients. 15
Figure 2.4 Absolute and normalised request per second and concurrency

comparison of a C, JavaScript and Go implementation on server
hardware and Pi computers. 18

Figure 3.1 Alarm-based auto scaling mechanism as implemented by cloud
providers. 22

Figure 3.2 A traditional cache with an eviction policy compared to the re-
source database update mechanism as proposed in this thesis. 24

Figure 3.3 A critical path job scheduling problem where jobs run for a spe-
cified duration and must run in a constrained order. 27

Figure 3.4 The concept of cloud portability and interoperability. 31

Figure 4.1 Architecture overview of the proposed Web Scaling Framework
(WSF) that manages multiple components and applications hos-
ted by different cloud providers. 36

Figure 4.2 Overview of the worker component that is joining the worker
module and the web application. 41

Figure 5.1 Overview of the proposed Permanent Resource Storage and
Management (PRSM) pattern. 55

Figure 5.2 Proposed and traditional component composition and request
flow scheme. 57

Figure 5.3 Sequence diagram of the resource and dependency processing
mechanism implementing the management model of the Per-
manent Resource Storage and Management (PRSM) pattern. . 59

Figure 5.4 Normalised measurements and model of the linear and quad-
ratic network delay. 63

ix

Figure 5.5 A comparison of the total machines for target model MT , the
linear total machines regression MR and measured data for the
proposed scheme SP and traditional scheme ST 67

Figure 5.6 Optimal Concurrency Range with a Performance-Concurrency-
Width triplet. 69

Figure 5.7 Predictions fits, observed and predicted machine reductions
and relative average machine reduction for both schemes and
all evaluated real-world applications. 75

Figure 6.1 Resource graph with logical dependencies and resource de-
pendency graph with synchronous and asynchronous depend-
encies . 80

Figure 6.2 Dependency processing scheduling problem using a processing
tree with a shortest-path and a longest-path approach. 83

Figure 6.3 Shortest-Paths tree evaluation of 1000 dependency graphs with
an increasing number of edges. 84

Figure 6.4 Longest-path tree evaluation of 1000 dependency graphs with
an increasing number of edges. 88

Figure 6.5 Normalised correlations of the processing duration with the num-
ber of edges, mean dependency degree, dependency depth,
number of clusters and mean cluster size. 89

Figure 6.6 API structure graphs of six inspected real-world services with
read and processing vertices. 94

Figure 6.7 Resource graphs generated with the service based graph al-
gorithm. 95

Figure 6.8 Resource graphs generated with the fuzzy graph algorithm. . . . 96
Figure 6.9 Analysis of the influence and break-points of all model para-

meters to the duration deltas. 98
Figure 6.10Relative performance improvements when using resource de-

pendency processing over traditional processing. 101
Figure 6.11Structure based results of four series of increasing graph meas-

ures. 104

Figure 7.1 Portable and interoperable prototypical implementation of com-
ponents and modules. 112

Figure 7.2 Entity relationship model of the LinkR web application. 113
Figure 7.3 Screenshots from four LinkR web application service views with

annotated dependencies. 114
Figure 7.4 Service structure graph for the LinkR web application with re-

source nodes and dependency edges. 116

x

Figure 7.5 Mean processing cost and break-even points for multiple hit/miss
ratios. 119

Figure 7.6 Trade-off graphs for a series of read/processing ratios (lower is
better). 123

Figure 7.7 Normalised processing cost, duration and requests/s for the
evaluated prototype. 124

Figure 7.8 Performance optimsation triangle with low processing cost, low
storage space and low processing duration. 125

xi

List of Tables

Table 2.1 HTTP methods indicating the action to be performed on a server
with safe and idempotent classifications. 11

Table 3.1 Categorisation of work related to Web Scaling Frameworks. . . . 21
Table 3.2 Categorisation of work related to Request Flow. 23
Table 3.3 Categorisation of work related to Resource Dependency Pro-

cessing. 26
Table 3.4 Categorisation of work related to Cloud Portability and Interop-

erability. 30
Table 3.5 Summary of open research questions. 33

Table 4.1 Modules of a Web Scaling Framework. 39
Table 4.2 Framework parameters to manage a Web Scaling Framework. . . 42
Table 4.3 Minimum viable interfaces for a Web Scaling Framework. 43

Table 5.1 Component parameters that are used to describe and model the
performance of a single component x. 62

Table 5.2 Composition parameters that are used to describe and model
the performance of the composition of multiple components. . . . 65

Table 5.3 Isolated evaluation data for the delay factors of the component
models. 71

Table 5.4 Trace parameters extracted from real-world applications. 74
Table 5.5 Results of real-world application evaluation for both schemes. . . 75

Table 6.1 Conceptual distinction of dependency related graph types. 81
Table 6.2 Correlations of dependency measures with the processing dura-

tion. 89
Table 6.3 Graph and traffic parameters with distributions used to generate

evaluation data for the performance comparison. 92
Table 6.4 Key figures of the extracted service parameters. 94
Table 6.5 Key figures of the generated evaluation data. 100
Table 6.6 Structure based performance results for Figure 6.11. 105

Table 7.1 LinkR web application routes and dependencies. 115
Table 7.2 Key figures of the generated application resources and traffic

traces to evaluate the prototypical implementation. 122

xii

Abstract

With the emerging global trends of the social web, smart health and the Internet
of Things, the Internet has become the epicenter of modern life. Through mobile
smart devices and sensors, ubiquitous communication is omnipresent. Day by day,
users and machines contribute inconceivable amounts of new data while operating
on aggregations of existing data. Cloud computing enables platforms to deal with
this enormous amount of data by offering resources on a pay per use base. This
allows cloud customers to create products potentially operating world-wide with no
upfront investments. The efficient utilisation of cloud computing resources, how-
ever, introduces major challenges. Web applications need to cope with complex
infrastructure issues such as the distribution of messages and data between multiple
machines, the dynamic provisioning of machines, the selection of the best cloud
providers and services, resilient monitoring and orchestration of this manifold sys-
tem. Current solutions to manage these complex tasks are typically hand crafted
for specific cloud providers. A further challenge is the optimisation of data for cloud
processing. Typically, web applications incorporate partial caches that store a sub-
set of resources temporarily to improve performance. However, it is challenging to
select the best items to cache as modern web applications tend to be user content
driven and thereby exhibit huge numbers of resources that are custom made for
users of equal importance.This thesis deals with the aforementioned challenges by
proposing and investigating the following novel contributions. Firstly, in order to
segregate the application and hosting logic, a novel class of Web Scaling Frame-
works (WSFs) is presented with a conceptual architecture design taking over the
complex matter of scaling. To optimise the distribution of the work among mul-
tiple components in WSFs, a novel request flow scheme is then designed, modelled
and evaluated with real world data. Furthermore, as a modern alternative to cache
eviction, an efficient resource dependency processing approach using cloud storage is
analysed, modelled and evaluated. Finally, in order to overcome special customisa-
tions for cloud providers, a portable and interoperable prototypical implementation
of a WSF is created and evaluated with a model determining the processing cost and
storage space requirements in contrast to a traditional processing approach. The
work in this thesis largely contributes to the generation of a new level of abstraction
for more scalable cloud deployment and hosting. With the adoption of the proposed
class of frameworks, a variety of WSF implementations can contribute to enabling
future applications to focus on enhanced application logic as opposed to deploying
and hosting logic. This enhanced focus in turn can be used to create a series of new
generation smart services helping to unravel the true power of cloud computing.

xiii

Declaration

The research presented in this thesis was carried out by the undersigned. No part
of the research has been submitted in support of an application for another degree
or qualification at this or another university.

Signed: . Date: 01.04.2016

xiv

Acknowledgements

Firstly, I would like to thank my supervisors Qi Wang, Ansgar Gerlicher and Christos
Grecos for their brilliant supervision efforts. Whenever I needed critical feedback
or advice on the next interesting paths to explore, they provided me with their
helpful guidance and experience. The positive and inspiring atmosphere during our
meetings and telcos was incredibly motivating and gave me the trust to eagerly
continue with the project.
Secondly, I want to express my deepest gratitude towards my family, especially my
future wife Anna. I’m extremely thankful for giving me the time and space to study.
I promise, from now on we can start doing something on weekends and I will not
claim extra luggage for a cluster of computers in our future holidays.
Further, I want to give special thanks to Walter Kriha, who, with his inspiring
lectures, projects and supervision of my bachelor and master thesis, deserves a great
deal of gratitude in supporting and motivating me for the project.
Last but not least, I want to thank my current and former colleagues for their
inspiration and support, especially Volker Tietz with whom I developed the initial
motivation for this project.

xv

List of Publications

Peer-reviewed Journal Papers

1. Fankhauser, T., Q. Wang, A. Gerlicher, C. Grecos and Wang, X. (2015). ‘Web
Scaling Frameworks for Web Services in the Cloud’. In: IEEE Transactions
on Services Computing. In press (accepted), Jul. 2015. (DOI: 10.1109/
TSC.2015.2454272 for Early Access)

2. Fankhauser, T., Q. Wang, A. Gerlicher and C. Grecos (2016). ‘Resource De-
pendency Processing in Web Scaling Frameworks’. In: IEEE Transactions on
Services Computing. In press (accepted). May. 2016. (DOI: 10.1109/
TSC.2016.2561934 for Early Access)

Peer-reviewed Conference Papers

1. Fankhauser, T., Q. Wang, A. Gerlicher, C. Grecos and Wang, X. (2014). ‘Web
Scaling Frameworks: A novel class of frameworks for scalable web services in
cloud environments’. In: Proc. IEEE International Conference on Commu-
nications (ICC). pp. 1760–1766, Sydney, Australia, Jun. 2014.

xvi

1. Introduction

1.1 Overview
Over the last decade, the Internet has become a social place of global utmost import-
ance. The principle of users contributing content to web platforms is omnipresent.
For the current generation of users it is completely normal to have video chats
with other users, buy and sell new or used products, plan trips on online maps,
share pictures with friends, rate holidays and even get medical advice on the so-
cial web. Further, with the smart health trend users have started to contribute
and share anonymised personal data into the web. In the future, this data can be
used to predict and monitor disease spread and ultimately even prevent outbreaks
completely. With the upsurge of the Internet of Things, supplementary data is con-
tributed to the web by power grids, cars, household appliances, traffic regulators
and buildings. Through mobile smart devices and sensors, a constant stream of
messages between multiple endpoints is established leading to ubiquitous data ex-
change. This stream of messages is further increased by users having multiple mobile
devices such as smart phones, tablets, laptops and smart watches that constantly
collect and communicate data. All content and communication data are analysed
for correlations, patterns and abnormalities with big data algorithms. This enables
platforms to gather and prepare significant information aggregated from enormous
collections of sources. The development of the social web is highly influenced by the
cloud computing trend. Cloud computing allows provisioning computing resources
and storage on demand where the costs are based on processing time and storage
space. Both the handling of the increased number of messages and the processing
of huge amounts of data is only possible as customers can dynamically rent and
return resources as required. This allows cloud customers to create products poten-
tially operating world-wide with no upfront investments. On the technical side, the
enormous amounts of data that have to be processed as quickly as possible intro-
duce major challenges. Systems have to deliver high performance by processing as
much data per second as possible. However, a single machine provisioned from a
cloud provider is not able to cope with all data. In consequence, multiple machines
need to be employed and coordinated to process the data for scalability consider-
ations. Further, systems need to interoperate multiple cloud providers to utilise
multiple cloud services and benefit from different pricing models. As the amount of
data that needs to be processed per second changes over time, systems need to be
scaled continuously to ensure high performance. Scaling a system spanning multiple
providers introduces a number of complex issues:

1

• To how many machines should the system be scaled minimally at each given
point in time?

• How is the processing distributed between the machines?

• How fast should machines be added or removed when the amount of data
changes?

• Where is the data stored that needs to be shared between the machines?

• On which geological location should the machines be placed?

• How is the application logic affected by multiple machines?

• Which cloud provider offers the best resources for the processing?

• How to ensure that data is not processed multiple times on different machines?

• Where to place the logic for machine provisioning?

As there is no clear answer for any of the issues, many customers decide to solve
performance problems manually at the time they appear. As presented in the above
issues, however, the solutions are quite complex and therefore take time to imple-
ment. Unfortunately, performance problems typically appear when a certain critical
mass of users for the product is reached. If the product is then unavailable due to
performance problems, users can not test the product and consequently might decide
to abandon the product completely. Jacko, Sears and Borella (2000) find that for
products that require a high level of interactivity such as social networks, the user
experience massively suffers from slow response times. Therefore, web products need
not only be constantly available, but also fast. A further challenge is the optimisa-
tion of data processing. In order to save valuable processing operations, typical web
applications store results from the processing in a cache. When a new processing
is about to be scheduled, it firstly looks into the cache to see whether the result is
already present. If it is present, the processing can be skipped. The size of the cache
is limited due to storage space cost, thus each processing result is evaluated for its
importance where it might evict another result in the cache. Two major challenges
exist with this approach. Firstly, it is a complex matter to select the correct results
where the system benefits most from keeping them cached. Secondly, social web
applications tend to have huge amounts of different results as every user receives
content especially composed for him/her. This makes it hard to determine the im-
portance of a cached result and can lead to highly fluctuant cache contents where
many results are processed for multiple times. The aforementioned issues motiv-
ate a research effort on the automatic and optimised provisioning and composition
of cloud resources with novel algorithms improving the processing performance. A
further concern of this thesis is to identify possibilities to incorporate the optim-
isations into a common framework that can be shared by both cloud providers and

2

customers, so that they can easily benefit from the features that are implemented
on another layer of abstraction.

1.2 Research Aim and Objectives
The overall aim of this project is to find and evaluate a novel class of frameworks
taking over the complex task of automatic scaling in an optimised fashion. In
contrast to existing Web Application Frameworks (WAFs) responsible for building
the logic of a web application, this thesis presents and evaluates the concept of Web
Scaling Frameworks (WSFs) responsible for scaling web applications in an automatic
and optimised fashion. Consequently, the project is planned to fulfil the following
specific objectives:

• O1: To separate the concerns of application logic and scaling logic: Find a
conceptual architecture design including required modules, interfaces, para-
meters and components valid for all implementations of WSFs. Identify cloud
architecture patterns that can be applied to support an optimised, manageable
and versatile structure of web applications. Ensure that existing WAFs can
be used in combination with WSFs.

• O2: To distribute work to multiple components and fully benefit from a novel
caching approach: Design and implement a novel request flow scheme that
routes requests efficiently through a novel composition of components in an
optimised fashion. Develop an analytical model of components and their com-
position describing the request flow performance in comparison with a tradi-
tional approach and identify major influencing performance parameters. Find
a model describing the optimal performance curve of a component with cor-
responding key metrics. Evaluate the model on both the component and com-
position level with real world data.

• O3: To optimise the processing performance of the novel caching approach:
Analyse the structure of resources and their dependencies to find algorithms
that can be used to optimise the processing performance. Identify key met-
rics of the dependencies with major influences on the processing speed and
complexity. Find novel methods to generate resources with their dependen-
cies based on existing real world application structures. Develop an analytical
model describing the processing duration of resources with their dependencies
and a model of a traditional approach to compare their performance. Evaluate
the models with real world data.

• O4: To enable multiple cloud provider systems and predict resource cost:
Design and present a prototypical implementation of an architecture that en-
ables WSF modules and components to be migrated between cloud providers
and be operated by multiple cloud providers simultaneously. Identify required

3

Figure 1.1: The optimisation of a mobile advertising platform served as initial motivation
for the project.

steps to integrate web applications created with WAFs into a WSF. Develop
analytical models describing the processing cost and storage space require-
ments of both a dependency based processing and a traditional processing
approach. Evaluate the models with empirical data.

In summary, to fully exploit the potential of cloud computing a new layer of abstrac-
tion responsible for automatic scaling must be extracted. Further, resource update
mechanisms must be found that utilise modern cloud storage capabilities to present
an optimised alternative to traditional caching systems.

1.3 Project Overview and Technical Contributions
The initial motivation for this project was developed back in 2012, when the author
was working as a freelancer for a mobile advertising platform in Singapore. The
platform delivered dynamic mobile image banners to smart phones based on their
geo location as shown in Figure 1.1 (a). With the growth of the platform, the traffic
quickly increased up to a level where it was necessary to scale out the servers. The
resources were of highly dynamic nature as the image banners included exact dis-
tances from the customers to the point of interests, special offer texts and images
were customized for the screen sizes of the requesting devices. This led to a point
where the majority of used machines were constantly reprocessing similar images,
and customers had to wait a few seconds for the banners to be ready. The applica-
tion of contemporary caching mechanisms did not work as every image was custom
build for a single request. After some intense work, the engineering team and the
author developed a scheme where all combinations of discrete distances, sizes and
offer texts were preprocessed as soon as the banners were added into the system.
The resulting images were stored into cloud storage as shown in Figure 1.1 (b). All
banner requests were routed to a subsystem designated to retrieve image banners
only. The request parameters were mapped to one of the distinct tuples referen-
cing a preprocessed image that could be delivered instantly as shown in Figure 1.1

4

(c,d). This allowed the system to reduce the number of total servers by 80% while
improving response times by over 95%. However, the scheme was highly custom-
ised to the problem, so consequently a first evaluation of a more abstract scheme
was developed by the author in his master thesis in 2013. In the master thesis, it
was evaluated if the general preprocessing of all resources can lead to performance
improvements. The results of the master thesis showed that a scheme where by
default all requestable resources are persisted is not reflected by current research.
This identified the research gap ultimately leading to the research efforts presented
in this thesis.
In the initial phase of the project, the idea of different subsystems for requests that
need processing and requests that read content was tackled. The illustration of the
problem and proposed solution with the subsystems received a best poster award
from the UWS Institute of Creative Technologies and Applied Computing. An initial
development and evaluation of a performance model with components hosted on a
single machine helped to assess the general potential of the novel request flow scheme
and was published by Fankhauser, Wang, Gerlicher et al. (2014) and presented at
the IEEE International Conference of Communications (ICC) in Sydney.
After the positive feedback from the IEEE ICC conference publication, the novel
request flow scheme was further examined. A conceptual architecture was developed
and the model was enhanced significantly to describe component clusters of mul-
tiple machines. During the initial steps for the evaluation of the components, it was
noticed that the performance of a component was heavily influenced by the number
of concurrent requests entering the component and there exists an concurrency to
requests per second optimum. This optimum was extracted into an optimal concur-
rency range model and a performance-concurrency-width triplet that allows a simple
performance comparison between components. The triplet thereby includes hard-
ware and software components as it describes only the relation between concurrency
and request flow. Further, the model was evaluated with real world data where
the model fits support the approach. The complete work was published as a journal
paper by Fankhauser, Wang, Gerlicher et al. (2015) in the IEEE Transactions on Ser-
vices Computing (TSC) journal. The results from the enhanced modelling identify
the time that is available to process resources with their dependencies when the
novel request flow is used over a traditional routing scheme.
In the third phase, this led to the question of an exact modelling of the resource
dependency processing. The structure of web applications allowed defining a graph
of resources as nodes with directed edges as dependencies. For an optimisation of
the processing of this graph, it was possible to find algorithms in the domain of
project management that allowed an order constrained processing of resources when
enhanced. For the evaluation of the developed model, it was infeasible to obtain
real world data for the novel concept as current web applications do not define their

5

dependency graph. As a solution, existing Application Programming Interfaces
(APIs) of social web applications were analysed to extract key metrics. With these
key metrics, it was possible to develop algorithms that create dependency graphs
of arbitrary dimensions exhibiting similar key metrics. The generated graphs then
were used to evaluate the models. It was further interesting to identify correlations
between key metrics of dependencies and the overall performance. The correlations
helped in finding the most influential metrics worth optimising. The work of the
third phase has been published as a journal paper by Fankhauser, Wang, Gerlicher
et al. (2016) in the IEEE Transactions on Services Computing (TSC) journal.
In the fourth and final phase of the project, a prototypical implementation of a
portable and interoperable WSF was developed along with a model and empirical
evaluation of the processing cost and storage space requirements. The usage of Linux
containers for components facilitated the defining of containers that run on multiple
cloud providers. By implementing a social application and integrating it into the
prototypical implementation of the WSF, the adaptions required for the integration
were found. During deployment of the application, it was necessary to initially
set up a rough number of the targeted amount of processing and required storage
space. This led to the development of a model that allows determining the required
processing cost and storage space for applications using a WSFs with dependency
processing and applications using a traditional processing approach. The evaluation
of the model was executed on the prototypical implementation where the model fits
the empirical data to a high degree. The work of the fourth phase will be submitted
for publication.
With the completion of the project, three major concepts allow a new understand-
ing in the field of scalable web services. Firstly, the modelling of service component
performance can be simplified by abstracting complex service internals such as CPU
load, memory usage and network saturation into processing delays. Cloud provided
service components, such as queues or key-value databases often abstract the in-
ternals of a more complex system. Consequently, the only metric available across
providers and service components is the time it takes to enqueue a message or fetch
a record from a database by key. Secondly, to accurately describe the relationships
between resources, the data model of a web application can be utilised. This enables
building resource cache systems that are based on accurate resource dependencies in
contrast to cache eviction based on approximation. Finally, the type of interaction
with a web service can be used to design and scale individual subsystems for the
service. Users consume and produce content in different rates for different services,
such as read-heavy video on-demand services and write-heavy social messaging ser-
vices. Consequently, individual subsystems dedicated to content consumation and
production enable fine-grained scalability and decouple the effects of performance
issues.

6

1.4 Research Methodology
The research project is motivated from the real world problem of scaling a mobile
advertisement platform as described in the previous section. As a first step, the
initial idea to create individual subsystems for scaling was formulated. Next, an
intensive literature review was performed in order to find and identify existing work
in the field. With the results from the literature, the idea was adapted and an initial
prototype was built. In order to predict the performance, initial modelling was
performed and the prototype refined to measure the predictions of the model. After
further iterations spent in refining the model and prototype, data for an empirical
validation was collected. Next, the empirical evaluation was designed and executed.
As a result of the evaluation, the models were further refined and evaluated until
the model fits suggested a defined accuracy level. This approach was repeated for
all three main chapters of the project Chapter 5, Chapter 6 and Chapter 7, where
the results from the previous modelling and evaluations influenced the subsequent
chapters.
The proposed concepts, patterns and schemes are validated using mathematical
modelling and empirical evaluation. For the empirical evaluation with multiple
computers, an evaluation platform with 42 Raspberry Pi computers named Pi-One
was built as detailed in Chapter 2. Both the performance of a Raspberry Pi com-
puter in comparison to traditional server hardware and with different programming
frameworks was evaluated to ensure the validity and transferability of results. All
iterations to refine the models were carried out until the model fits suggested a
defined accuracy level. The data collections used to validate the models were chosen
to cover a large range of potential applications.

1.5 Thesis Outline
This thesis is organised into eight chapters as illustrated in Figure 1.2. The chapters
are based on three work packages. Figure 1.2 presents the outcomes of the work
packages as publications and contents of thesis chapters.

• Chapter 1: Introduction is the current chapter that introduces the motiva-
tions and structure of this thesis.

• Chapter 2: Background provides essential background information to help
understanding the problem definition and advanced concepts presented through-
out this thesis.

• Chapter 3: Related Work provides a critical literature review of recent relev-
ant work. The related work is categorised into sections concerning the general
concept of WSFs, an optimised request flow between components, the pro-
cessing of resource dependencies, the orchestration of components and cloud
portability and interoperability. This matches the subsequent chapters as

7

Figure 1.2: Overview of thesis outline with chapters, work packages and publications.

shown in Figure 1.2.

• Chapter 4: Conceptual Architecture Design presents a conceptual architec-
ture design including required modules, interfaces, parameters and components
valid for all implementations of WSFs.

• Chapter 5: Request Flow Optimisation Scheme presents a novel design pat-
tern for resource storage and management, and an optimised request flow
scheme between components. A Permanent Resource Storage and Manage-
ment (PRSM) pattern is developed that enables all resources to be fetched
without prior processing, where the processing step is shifted to a manage-
ment model.

8

• Chapter 6: Resource Dependency Processing presents the dependency struc-
ture and key graph measurements of web resources. A longest-path algorithm
using topological sort with dynamic programming is developed for efficient
processing. Further, dependencies are analysed to find correlations between
processing performance and graph measures.

• Chapter 7: Cloud Portable and Interoperable Prototype Implementation and
Evaluation presents a cloud portable and interoperable prototype implement-
ation of a WSF. It is shown how existing web applications can be integrated
into a WSF to enhance the scalability and portability. Further, a model to
calculate and compare the processing cost and storage space of resources is
developed.

• Chapter 8: Conclusion and Future Work concludes this thesis based on the
findings of the aforementioned chapters and presents an outlook to possible
future research.

• Appendix A provides a list of acronyms and abbreviations used in this thesis.

• Appendix B attaches the awards this research project was distinguished with.

• Appendix C illustrates the Pi-One Evaluation Cluster mainly used for the
evaluations in the project.

9

2. Background and Evaluation Platform

2.1 Overview
This chapter provides essential background information to help understanding the
problem definition and advanced concepts presented throughout this thesis. The
goal of this thesis has been the design and evaluation of a Web Scaling Framework
(WSF) enabling the automated and cloud interoperable scaling of web services with
advanced throughput performance. Therefore, the major characteristics of the world
wide web along with common web architecture patterns and web scaling schemes
are summarised here. Furthermore, the computing platform used for evaluations
throughout this thesis is presented and key figures collected from the cluster are
introduced at the end of the chapter.

2.2 The Web
The World Wide Web is an information space where clients can retrieve documents
from servers connected to the Internet. Clients appear in many forms such as
browsers on desktop computers, mobile smartphones or infotainment systems in
cars. Servers provide documents often stored in databases for a better organisa-
tion. Documents are uniquely identified by a Uniform Resource Identifier (URI)
that specifies the protocol scheme, the host, the port and the path of a resource.
Document contents are formatted in hypertext. Hypertext is structured text that
contains hyperlinks to other documents identified by their URI.

2.2.1 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application protocol standardised by
the Internet Engineering Task Force (IETF) to exchange hypertext between clients
and servers. In order to exchange a document, a client expresses its intent to retrieve
a document by sending a request to a server.

2.2.1.1 HTTP Request

A HTTP request has a standardised form containing a header and a body. The
request header is used to pass information such as the HTTP method, the URI, the
HTTP version, accepted content-type for the response and information about the
client to the server. The request body can optionally be used to transfer data to the
server. The HTTP methods (IETF RFC2616, 1999) presented in Table 2.1 indicate
the action to be performed by the server. By definition of IETF RFC2616 (1999)
safe methods do nothing but retrieve content without any side effects. Idempotent

10

Table 2.1: HTTP methods indicating the action to be performed on a server with safe and
idempotent classifications.

Method Action Safe Idempotent
OPTIONS Request communication options yes yes

GET Retrieve content yes yes
HEAD Retrieve information header only yes yes
POST Create information provided in request body no no
PUT Update information provided in request body no yes

DELETE Destroy document no yes

methods leave the server in the same state regardless of the number of times the
request is processed. All other methods strictly have side effects and therefore
must be ensured to be processed only once. This distinction is important for this
thesis as the request routing flow presented in Chapter 5 utilises the properties of
safe methods. The following example illustrates a complete HTTP request for a
document initiated by a client:

GET /index.html HTTP/1.1

Host: webscalingframeworks.org

User-Agent: curl/7.43.0

Accept: */*

2.2.1.2 HTTP Response

Analog to the request, a HTTP response has a header and a body. The response
header contains information about the result such as the HTTP status code, the
HTTP version, the content-type and content-length. The response body contains
the content of the requested document. Please refer to IETF RFC2616 (1999) for
a conclusive list of header values and options. The following example illustrates
the complete HTTP response received for the above request (comments are denoted
with //):

// Header

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 154

// Body

<!DOCTYPE html>

<html>

<head>

<title>Web Scaling Frameworks</title>

</head>

<body>

11

Figure 2.1: Evolution of the Web from document based web sites to interactive web
applications requesting resources from web services.

<h1>Web Scaling Frameworks</h1>

<p>Welcome!</p>

</body>

</html>

2.3 Web Sites
A web site is a related set of hypertext documents typically served for a single
host name such as http://webscalingframeworks.org. Figure 2.1 illustrates the
exchange of documents for a web site. In Figure 2.1 (a) the client creates and sends
a request through a new HTTP connection to a server. The server responds at
Figure 2.1 (b) with the requested document. The client then presents the document
to the user in Figure 2.1 (c). As the user follows a link in document D2 to D3,
the client creates a new HTTP connection to request document D3 in Figure 2.1
(d). Finally in Figure 2.1 (e), the client throws away document D2 and presents D3
to the user. As for HTTP/1.1, connections are not automatically closed after the
server responds but can be reused. According to IETF RFC2616 (1999), "A single-
user client SHOULD NOT maintain more than 2 connections. . . ", however modern
browsers are known to maintain up to 6 connections to improve performance.

2.4 Web Applications
Web applications fundamentally extend the notion of a web of hyperlinked docu-
ments. Instead of the exchange of mere documents, full applications are served to
clients while servers implement complex application logic. The right side of Fig-
ure 2.1 illustrates the exchange of an application and its requested resources for a
web application. In Figure 2.1 (f) the client requests to load an application from the
server at Figure 2.1 (g). Once the client retrieves the application in Figure 2.1 (h),
it executes and presents the application to the user. At any time the application
decides to need more content, it requests new resources from the server over a shared
HTTP connection as shown in Figure 2.1 (j). A resource can be of any kind such
as lists of raw data, images or videos where the next section elaborates on further

12

http://webscalingframeworks.org

details. Finally, the resources are processed in the client application at Figure 2.1
(k) and optionally presented to the user.

2.4.1 Back End

The application back end is implemented on a single server or multiple, interconnec-
ted servers. In contrast to traditional web sites, web application back ends provide
enhanced functionality such as user authentication and authorisation, dynamic con-
tent management and data aggregation. As managing application logic is a complex
matter, Web Application Frameworks (WAFs) take over and simplify common tasks
involved in creating application logic.

2.4.2 Front End

The application front end is transferred to the client and presented in the browser.
A front end application differs from web site documents. It can offer interactive
user interfaces with instant response as needed in web mail, word processing, online
auction, video on demand, instant messaging or graphic design applications. WAFs
dedicated to the front end simplify the complex tasks of application development
and simplify common problems such as browser diversity.

2.4.3 Web Evolution

Figure 2.1 illustrates the evolution of the web from document-based web sites to
interactive web applications requesting resources from web services. Today, pure
web sites that exchange only documents with a server are increasingly replaced
by web applications. Many hybrid solutions exist where multiple smaller applica-
tions are loaded into documents, e.g. http://facebook.com, http://twitter.com
or http://amazon.com. The hybrid approach is often selected in order to pre-
serve the ability to be indexed by search engines. Pure web applications, such as
http://netflix.com, http://mail.google.com or http://docs.google.com are
often closed systems by design, where linking of application state is achieved only
within the application domain. This thesis considers both types of web sites and
web applications, where the current trend points towards an increased use of web
applications.

2.5 Web Services
Web services provide resources and functionality on the server back end. In contrast
to documents provided by a server, they expose small units of application logic.
The information is exchanged in machine readable data formats, such as Extensible
Markup Language (XML) or JavaScript Object Notation (JSON). This enables, as
defined by the World Wide Web Consortium (W3C), an ". . . interoperable machine-
to-machine interaction over a network" (W3C Web Service Architecture, 2004).

13

http://facebook.com
http://twitter.com
http://amazon.com
http://netflix.com
http://mail.google.com
http://docs.google.com

Figure 2.2: Representational State Transfer (REST) architectural style.

2.5.1 Service Oriented Architecture

A Service Oriented Architecture (SOA) is a distributed systems architecture of web
services as defined by W3C Web Service Architecture (2004). In a SOA, web applic-
ation front ends communicate with web application back ends using web services
as shown in Figure 2.1 (j-k). Additionally, web services in a SOA enable a web
application back end to communicate with other web application back ends. This
enables the creation of complex web applications on highly distributed systems as
presented throughout this thesis.

2.5.2 Architectural Styles

The authors in W3C Web Service Architecture (2004) identify two major classes
of web services: Web services with an application specific architectural style and
web services complying to the Representational State Transfer (REST) architectural
style.

2.5.2.1 Application Specific

As shown in Table 2.1, HTTP defines methods to indicate desired behaviour of web
service actions. However, many design decisions remain undefined by HTTP and
thereby open to the application (Fielding, 2000). Consequently, web services can be
incompatible unless following a uniform architectural style.

2.5.2.2 Representational State Transfer

The REST architectural style proposed by Fielding (2000) constraints HTTP to
uniform interface semantics. This enables web services to be formed as compatible
components communicating with each other. The use of compatible components is a
fundamental approach essential to this thesis, where a novel component architecture
is presentend in Chapter 4. Servers providing a RESTful Application Programming
Interface (API) typically follow a URI naming scheme as illustrated in Figure 2.2.
The base URI at Figure 2.2 (a) identifies a root resource name. Using an HTTP
method at Figure 2.2 (b), a resource identifies the action it performs, such as Create,
Read, Update or Delete (CRUD). In Figure 2.2 (c), a resource declares the Multipur-
pose Internet Mail Extensions (MIME) content type for its current representation
independently from the URI. A collection resource at Figure 2.2 (d) bundles mul-
tiple item resources at Figure 2.2 (e), where an item resource represents content for

14

Figure 2.3: Horizontal and vertical web scaling of servers for multiple requesting clients.

a single entity. An item resource can link to dependent collection resources linking
to further item resources. This hierarchy and its depth (Figure 2.2 (f)) is essential
to the resource dependency processing approach presented in Chapter 6.

2.6 Web Scaling
The processing power of servers is limited by their hardware. As a result, servers
are only able to handle a limited number of requests and responses per second. In
this thesis, the number of requests per second is denoted as load, where the number
of requests and responses per second is denoted as throughput. If the load applied
from clients is higher than the maximum load a server can handle, the server can not
accept further requests which leads to a service outage. In order to prevent service
outages, the server needs to be scaled.

2.6.1 Horizontal and Vertical Scaling

Figure 2.3 illustrates two possibilities to scale a web service. For both possibilities,
the clients are represented as C1, C2 and C3 that send requests R1, R2 and R3
to a server, or cluster of servers. In Figure 2.3 (a), the server processing power is
increased by adding a faster Central Processing Unit (CPU), more main memory
or additional network interfaces. In Figure 2.3, this is represented by increasing
the size of the circle. This approach however has an upper limit at Figure 2.3
(b), which is determined by the maximum hardware performance available. If the
load increases above the upper limit, further service outage occurs, hence limiting
the field of application for vertical scaling. In contrast, horizontal scaling increases
the number of servers and distributes portions of the load as shown in Figure 2.3
(c). The servers coloured in dark-blue represent existing servers for the current
amount of requests. The ligh-blue coloured servers are servers that can optionally
be provisioned if the number of requests increases. This approach has virtually no
upper limit, although it introduces complexity through the increased management
effort of multiple servers. A hosting with traditional servers is expensive as the
number of servers has to be increased to fit the maximum load ever applied to the
web application.

15

2.6.2 Cloud Computing

In the Infrastructure as a Service (IaaS) model (Fehling, Leymann, Retter et al.,
2014), cloud computing enables on-demand provisioning of processing power and
further resources on a pay-per-use basis. This allows a web application to scale
dynamically using a horizontal scaling approach. During low load periods only few
servers are provisioned to keep the infrastructure cost at minimum. When the load
increases, further servers can be added to the cluster to prevent service outages
(Figure 2.3 (d)). As dynamically adapting the number of servers is a complex
matter, this thesis proposes a system to evaluate the required number of servers for
individual components in Chapter 4.

2.7 Web Architecture Patterns
Web architecture patterns (Fehling, Leymann, Retter et al., 2014) describe common
approaches to split up web applications into components. According to Fehling,
Leymann, Retter et al. (2014), web applications are divided into three logical tiers:
A presentation tier, a business logic tier and a data tier. The presentation tier sup-
plies all user interface related functionality. The business logic tier implements the
processing of application related functionalities. The data tier stores and provides
content for the business logic tier. Two-tier applications combine the presentation
and business logic tier. Three-tier applications have separate tiers for each category
of functionality.

2.7.1 Monolithic Architecture

Using a monolithic architecture pattern, a web application is developed as a single
component. The component contains all application functionality and typically
connects directly to a database. Due to the fact that all functionality is bundled
into a single component, development, testing and deployment is simplified (Fowler,
2014). According to Fowler (2014), with increasing complexity of applications, it
becomes hard to structure and scale monolithic applications.

2.7.2 Microservice Architecture

In the microservice architectural pattern, an application is structured as a suite of
small web services (Fowler, 2014; Namiot and Sneps-Sneppe, 2014). Each service
component offers an autonomous functionality and typically has a self-reliant service
database. Small services allow simplified development and testing of components
and enable fine-grained scalability. Deployment becomes more complex as services
have to be discovered, monitored and maintained. This thesis uses the microservice
architecture pattern for the architecture in Chapter 4. Applications managed by a
WSF however are not constrained to a specific architecture pattern.

16

2.7.3 Traditional Approach

This thesis uses a traditional two-tier application as performance baseline. In the
Traditional Processing (TP) approach, HTTP requests enter the system through
a load-balancer component. The load-balancer distributes the requests to one of
many application servers. An application server parses the requests and checks if
the response it is asked to deliver is present in a cache component. If the response
is present, it fetches the response from the cache component and returns it via the
load-balancer to the client. If the response is not present, it creates the response
by fetching entries from a database component and converting the entries into the
resource representation format the client asked for. Finally, the response is sent to
the client via the load-balancer. For this approach, the application server implements
logic with the help of a WAF that typically supports the implementer with simplified
fetching of records from the database and the rendering of resource representations.
A key point of this approach is that every request sent to the service is handled by
the application server, which increases the performance demands for the cluster of
application servers. A detailed illustration of this approach is given in Figure 5.2
and corresponding performance modelling is presented in Chapter 5, Chapter 6 and
Chapter 7.

2.8 Pi-One: Evaluation Platform
For all performance evaluations, this thesis uses a custom-built cluster of 42 Rasp-
berry Pi computers named Pi-One (Appendix 8.6). To ensure the results can be
transferred to other implementations and hardware, the evaluation system is tested
for influences of different programming frameworks and hardware.

2.8.1 Hardware and Software Construction

The cluster illustrated in Appendix 8.6 is built from 42 Raspberry Pi 1 Model B+
computers. The computers are mainly selected due to financial limitations of the
project, where the cost for a single computer including all required accessories was 50
EUR. Each of the computers has a 700 MHz ARMv61 single-core CPU, 512 MB of
memory, 16 GB of flash storage and a 100 Mbit/s Ethernet interface. All computers
are directly connected to a HP ProCurve 2810–48G 48 port Ethernet switch. An
additional Raspberry Pi computer is connected to the switch that orchestrates all
other computers. It serves as a DNS server for the computers and central gateway
to the cluster. Each computer is individually powered by a dedicated power supply.
All computers run Arch Linux in the ARM edition and are accessible via Secure
Shell (SSH). The evaluation tasks are individually started via SSH by the master
computer. Therefore, scripts are created on the master, which automatically build
and deploy programs to the target computers, execute and repeat the evaluations
and collect the results. Further, for the evaluations in Section 7.3.3, each computer

17

0.0 0.5 1.0 1.5 2.0

0.7

0.8

0.9

1.0

Concurrency
1 5 10 50 100

100

1000

104

105

Requests/sec Normalised PerformanceAbsolute Performance

(a)

(a)

C on Server

JS on Pi

C on Pi

Go on Server

Go on Pi Optimal Concurrency
Ranges

JS on Server

Requests/sec

Normalised Concurrency

Figure 2.4: Absolute and normalised request per second and concurrency comparison
of a C, JavaScript and Go implementation on server hardware and Pi computers.

runs a Docker (2013) daemon that is used by a Docker client running on the master
computer to deploy containers.

2.8.2 Evaluation Setup

For the evaluation of the platform, a request generator sends a request to a server,
waits for the response and then immediately sends the next request. The generator
measures the throughput for 10 minutes excluding the first 2 minutes and then
records the average requests per second achieved within the 8 minutes period. Then,
both the request generator and the server are restarted to begin with the next
evaluation where two requests are started at the same time, thereby increasing
the concurrency to two. With increasing concurrency, this is continued until the
measured requests per second reach a maximum and then drop down to at least
25% of that maximum.

2.8.3 Influence of Programming Framework

To compare the influence of the programming framework on all measured results,
three implementations are tested: An implementation using the C programming lan-
guage with the libuv (2011) library, a JavaScript implementation on node.js (2009)
and a Go (2009) implementation using Go’s native HTTP server. The complex-
ity of all all implementations varies, where the C implementation is most complex
due to the hardware-related programming such as manual memory and concurrency
management. It is followed by the Go implementation that completely abstracts
the hardware layer but requires manual concurrency management via channels. The
most simple implementation is the JavaScript implementation that automatically
manages concurrency with an asynchronous event loop and callbacks. The Go im-
plementation is between 5%-15% slower than the C implementation as shown in
Figure 2.4. The C implementation is noticed to be one order of magnitude faster
than the JavaScript implementation.

2.8.4 Influence of Hardware

Typically, cloud providers do not use Raspberry Pi computers for their hosting
services. Consequently, it is necessary to evaluate the effect of different hardware
on the results to ensure their transferability. For this, all implementations from the

18

previous section are tested on the following platforms: Server hardware using a 2.6
GHz Intel Core i7 and a Raspberry Pi computer where both are running Arch Linux.
For network switching, a HP ProCurve 2810–48G Ethernet switch is employed whose
ports operate at 100 Mbit/s. The server hardware is noticed to be approximately
one order of magnitude faster than the Pi computers.

2.8.5 Results

The data supports that the results of the evaluation are transferable among different
implementations and hardware. Figure 2.4 illustrates the normalised and absolute
performance curves of all implementations on both hardware. All normalised curves
show the same performance pattern where the performance increases to a maximum,
stays close to the maximum for a while and then breaks down as the system is over-
loaded. The performance of the C implementation using libuv (2011) on the server
hardware increases notably slower than all the other implementations. Therefore,
the C implementation is the implementation most sensitive to concurrency, where
both other implementations exhibit performance close to the optimum in a wider
range of concurrencies as shown in Figure 2.4 (a). Chapter 4 analyses this optimal
concurrency range in detail. Based on the results, where the C implementation is
most sensitive to concurrency, complex to implement and for these reasons sparsely
used in web development, further implementations of prototypes in this thesis are
implemented using Go and JavaScript.

2.9 Summary
This chapter has introduced essential technology and terminology for the presented
research. Static web sites progressively evolve to complex web applications, where
web services provide functionality in machine readable formats. Due to increasing
numbers of requests, web services have to be scaled to prevent service outages. Ap-
plying common architecture patterns for scaling, such as the microservice architec-
ture increases web application complexity by an enormous extend. Hence, this thesis
proposes and elaborates on a framework enabling automatic scaling with improved
request throughput performance in Chapters 4, 5, 6 and 7. Finally, the computing
cluster Pi-One used for performance evaluations of the traditional approach and
prototypes proposed in this thesis has been presented and evaluated. The data sup-
ports that Pi-One results collected in this thesis are transferable among different
implementations and hardware.

19

3. Related Work and Theoretical Foundations

3.1 Overview
This chapter provides a critical literature review of recent relevant work and presents
theoretical foundations of the project. The related work is categorised into sections
concerning the general concept of WSFs, an optimised request flow between compon-
ents, the processing of resource dependencies, the orchestration of components and
cloud portability and interoperability. Table 3.1, Table 3.2, Table 3.3 and Table 3.4
give an overview of the reviewed work classified into sub-categories. Each section
identifies open research questions that are addressed in the Chapters 4, 5, 6 and 7.
Finally, Section 3.6 presents an overview of open research questions in reference with
their dedicated chapter and Section 3.8 provides a final summary of the literature
review.

3.2 Web Scaling Frameworks
In order to bundle the complex matter of scaling into a dedicated, reusable and
maintainable logical unit, the general concept of a WSF is proposed in detail in
Chapter 4. Cloud providers offer infrastructure and services that are used by ap-
plications to implement logic. As an example, a storage service of a cloud provider
offers virtually unlimited storage capacity to an application, a scalable queueing
service allows multiple logical modules of an application to communicate with each
other in a decoupled fashion and the dynamic provisioning of multiple servers en-
ables an application to adapt the requests that can be processed per second to the
number of incoming requests per second created by users of the application. The
role of a WSF is to define and automate how the offered services interact with the
application logic. A possible implementation of a WSF could be hosted on a server
of a cloud provider and ensure that the application logic that runs on other servers
has enough queueing and storage resources by provisioning optimised amounts from
the cloud provider. The full spectrum of features required to efficiently scale web
applications is detailed in Chapter 4 and includes modules that collect metrics from
components, provision components, watch and store metrics, implement resilient
behaviours, deploy applications and trigger component actions such as moving an
application to another cloud provider. The following sections identify recent relevant
work presenting related concepts and approaches.

20

Table 3.1: Categorisation of work related to Web Scaling Frameworks.

Web Scaling Frameworks (3.2) References
Platforms and Frameworks Addo, Do, Ge et al. (2015), Fehling, Leymann,

Retter et al. (2014), Zareian, Veleda, Litoiu et
al. (2015), Krintz (2013), Wolke and Meixner
(2010), Tung, Chaw, Xie et al. (2012), Mao
and Humphrey (2011) and Marshall, Keahey and
Freeman (2010)

Auto Scaling Features Amazon Web Services (2006), Google Cloud Plat-
form (2008), RackSpace (1998), IBM Bluemix
(2014) and DigitalOcean (2011)

Cloud Application Design Patterns Fehling, Leymann, Retter et al. (2014), Fowler
(2009), Young (2010), Fowler (2011) and Face-
book Flux (2014)

3.2.1 Platforms and Frameworks

A scaling platform or framework provides functionalities to improve web applica-
tion scaling, deployment, maintenance, monitoring and performance. Addo, Do, Ge
et al. (2015) present an architectural design for building and sustaining large-scale
social media intelligence solutions that can exhibit high-scalability, high-availability
and improved performance attributes. The proposed architecture design is special-
ised in social media intelligence solutions, where a traditional three-tier architecture
(Fehling, Leymann, Retter et al., 2014) is combined from a collection of IaaSs and
Platform as a Services (PaaSs) in the cloud. The Knowledge-Feed platform proposed
by Zareian, Veleda, Litoiu et al. (2015) facilitates monitoring of web applications,
creates performance and cost models and executes machine provisioning to optimise
performance and infrastructure cost. The AppScale Cloud Platform as proposed
by Krintz (2013), is a distributed software system that implements a PaaS that
allows deployment of cloud applications. The TwoSpot PaaS (Wolke and Meixner,
2010), enables hosting multiple, sandboxed Java compatible applications and has
a focus on the prevention of vendor lock-in. Tung, Chaw, Xie et al. (2012) pro-
pose a highly resilient systems architecture for the cloud with a focus on failures
and fallback handling. The auto-scaling algorithm with job deadlines presented by
Mao and Humphrey (2011) optimises resource utilisation. In their ElasticSite plat-
form, Marshall, Keahey and Freeman (2010) extend non-cloud resources by cloud
resources with a focus on different launch policies. This thesis presents a framework
that considers the automatic scaling, monitoring and maintaining of components
along with an optimised resource utilisation, service composition architecture and
caching strategy. None of the related approaches covers the full spectrum that is
required to build a WSF as presented in Chapter 4.

21

3.2.2 Auto Scaling Features of Cloud Providers

Cloud providers offer scaling features directly integrated into their services as illus-
trated in Figure 3.1. Amazon Web Services (2006) Auto Scaling allows to create
alarm conditions based on metrics collected by Amazon Web Services (2006) Cloud-
Watch. If a metric breaches the threshold of an alarm, actions, such as scaling up
or down can be triggered. The Google Cloud Platform (2008) supports the creation
of autoscaling groups, where instances can be scaled up and down using the Google
Cloud Platform (2008) Autoscaler. Autoscaler decisions are based on CPU, load
or monitoring metrics where the scaling decisions can be configured from multiple
policies. Microsoft Azure (2010) cloud services offer autoscaling based on CPU and
traffic demands. RackSpace (1998) offers autoscaling features via their Cloud Con-
trol Panel and API. IBM Bluemix (2014) enables customers to scale horizontally and
vertically based on collected metrics. The DigitalOcean (2011) API offers manual
scaling features, where metrics such as CPU utilisation can be accessed to program
custom policies. All auto scaling features are strictly limited and custom tailored
to cloud providers. This thesis identifies and applies a common approach to scaling
through the monitoring of performance metrics as shown in Figure 3.1 (a). On a
breach of a metric threshold in Figure 3.1 (b), the alarm triggers a provisioning
action at Figure 3.1 (c) that is executed by a cloud provider service in Figure 3.1
(d).

3.2.3 Cloud Application Design Patterns

In addition to the fundamental web architecture patterns presented in Section 2.7,
further patterns exist to compose cloud applications and information systems. Fehling,
Leymann, Retter et al. (2014) identify different types of components, such as stateful,
stateless, user interface, processing, batch processing, data access, data abstractor,
idempotent processor, transaction-based and timeout-based components for cloud
applications. Additionally, the authors classify management components to follow
either a provider adapter, managed configuration, elasticity manager, elastic load
balancer, elastic queue or watchdog pattern. The management components defined
by Fehling, Leymann, Retter et al. (2014) are utilised in management processes, such
as the update transition, standby pooling, elasticity, feature flag and resilience man-
agement process. Fowler (2009) proposes a pattern called Eager Read Derivation for
information systems where the domain logic is split into validations, consequences

S1
A1 A2 A3 A4

S2 S3 S4 S5 S6
M1 M2 M3 M4

CPU Memory Network Disk

Monitoring

Provisioning
Cloud Provider Services

Server

MetricAlarm

Threshold

(a)

(b)

(c)

(d)

Figure 3.1: Alarm-based auto scaling mechanism as implemented by cloud providers.

22

Table 3.2: Categorisation of work related to Request Flow.

Request Flow (3.3) References
Caching Strategies
and Policies

Le Scouarnec, Neumann and Straub (2014), Qin, Zhang,
Wang et al. (2011), Negrão, Roque, Ferreira et al. (2015),
Bangar and Singh (2015), Sarhan, Elmogy and Ali (2014),
Pettersen, Valvag, Kvalnes et al. (2014), Bocchi, Mellia
and Sarni (2014) and Han, Lee, Shin et al. (2012)

Performance Modelling Han, Ghanem, Guo et al. (2014), Espadas, Molina,
Jiménez et al. (2013) and Jiang, Lu, Zhang et al. (2013)

Event Stream Processing Kroß, Brunnert, Prehofer et al. (2015), Kalashnikov,
Bartashev, Mitropolskaya et al. (2015), Wu and Tan
(2015), Hummer, Satzger and Dustdar (2013), Apache
Samza (2012), Apache Kafka (2012), Apache Hadoop
YARN (2011), Apache Storm (2015), Apache Spark
(2014), Amazon Kinesis Streams (2014), Amazon Lambda
(2014) and Google Cloud Dataflow (2015)

and derivations. The pattern introduces reporting databases to separate query data
from the domain model. On this basis, the Command Query Responsibility Se-
gregation (CQRS) pattern identified by Young (2010) and Fowler (2011) splits the
conceptual representation of an information system domain into separate models
for update and display. The authors compare it to a common Create Read Update
and Delete (CRUD) approach, where a single model is used to store and retrieve
data. With increasing complexity through the addition of multiple representations of
data, the CRUD approach gets more complicated. Hence, Young (2010) and Fowler
(2011) propose to split up the model into separate query and command models in
order to reduce complexity. Facebook Flux (2014) is an architecture pattern related
to CQRS that utilises a unidirectional data flow in order to ensure maintainability
of application components. This thesis applies all design patterns reviewed in this
section, where the conceptual architecture is presented in Chapter 4.

3.3 Request Flow
In Chapter 5, an optimised request flow based on the convention of a full caching
strategy is proposed. This section identifies work related to caching strategies and
policies, performance modelling and event stream processing.

3.3.1 Caching Strategies and Policies

As shown in Figure 3.2, caching strategies and policies determine the eviction of
cache objects to minimise the cache size and cost. In Figure 3.2 (a), new cache
objects are stored in the cache, where due to limited size, other cache objects have
to be evicted at Figure 3.2 (b). Eviction is either based on timeouts (Le Scou-
arnec, Neumann and Straub, 2014), access frequency (Le Scouarnec, Neumann and
Straub, 2014) or access patterns (Qin, Zhang, Wang et al., 2011) that are based

23

on machine-learning algorithms. The SACS system proposed by Negrão, Roque,
Ferreira et al. (2015) adds a spatial dimension to the cache replacement process by
measuring the distance between objects in terms of the number of links necessary
to navigate from one object to another and replaces objects distant from the most
recently accessed pages. Bangar and Singh (2015) develop a recommendation sys-
tem based on a K-means algorithm analysing the proxy access log containing entire
navigations of web pages by a targeted user and use it to predict upcoming web
URIs for pre-fetching. By adding the internal requests generated in each web site
as factors to the Least Frequently Used (LFU) and Weighting Replacement Policy
(WRP), the replacement approaches proposed by Sarhan, Elmogy and Ali (2014)
strengthen the performance of web object caching. The Jovaku platform (Pettersen,
Valvag, Kvalnes et al., 2014) is a generic database caching layer that relays database
operations through the Domain Name System (DNS) protocol utilising the proxim-
ity to clients. Bocchi, Mellia and Sarni (2014) and Han, Lee, Shin et al. (2012) find
cloud storage prices to continue to drop, hence storing resources in the cloud can be
cheaper than the recurring processing of resources on a cache miss. In contrast to
the aforementioned approaches, this thesis proposes to explicitly declare all depend-
encies between resources as shown in Figure 3.2 (c). All requestable web objects
are stored in a persistent resource database instead of a volatile cache. Instead of
the application of an recommendation system influenced LFU eviction mechanism,
a precise update mechanism as shown in Chapter 6 is proposed to keep the Resource
Database (RDB) in sync with the data.

3.3.2 Performance Modelling

This section identifies related work in the modelling of load and throughput perform-
ance. The elastic scaling approach as modelled by Han, Ghanem, Guo et al. (2014)
makes use of cost-aware criteria to detect and analyse the bottlenecks within multi-
tier cloud-based applications. The approach is based on monitors that measure the
current workload and scale up or down based on the performance. Espadas, Molina,
Jiménez et al. (2013) propose the itesm-cloud that establishes a formal measure for
under- and over-provisioning of virtualised resources in cloud infrastructures spe-
cifically for Software as a Service (SaaS) platform deployments and propose new
resource allocation mechanisms based on tenant isolation, Virtual Machine (VM)
instance allocation and load balancing. Jiang, Lu, Zhang et al. (2013) propose an

Figure 3.2: A traditional cache with an eviction policy compared to the resource database
update mechanism as proposed in this thesis.

24

optimal VM-level auto-scaling scheme with cost-latency trade-off. The scheme pre-
dicts the number of requests based on history data and then gives instructions for
service provisioning. In this thesis, the performance modelling is based on request
throughput and processing delays. This enables an abstraction of the underlying
hardware. CPU or memory boundaries are not present for cloud service components
as providers manage service scaling for the customer in the background. Hence, the
only universally present measures for performance are the request throughput and
the processing delay.

3.3.3 Event Stream Processing Platforms and Frameworks

Event stream processing is a programming paradigm where a stream of events is
processed by one or multiple components. This section identifies platforms and
frameworks related to the optimised processing flow of a stream of requests, as
presented in Chapter 5. Kroß, Brunnert, Prehofer et al. (2015) provide a stream
processing platform for Lambda architectures to efficiently use resources and reduce
hardware investments. The Carrera platform proposed by Kalashnikov, Bartashev,
Mitropolskaya et al. (2015) enables to build stream processing workflows that run
computations on Microsoft Azure (2010) and export data in real time. Chrono-
Stream (Wu and Tan, 2015) is a distributed system designed for elastic stateful
stream processing in the cloud offering dynamic vertical and horizontal scaling.
Hummer, Satzger and Dustdar (2013) provide an overview of the key concepts of
stream processing in databases, with special focus on adaptivity and cloud-based
elasticity. The reviewed approaches provide general, scalable stream processing plat-
forms that offer the ability to create programmable workflows. This thesis presents
not a general platform, but a framework with workflows explicitly dedicated to web
scaling. All presented approaches, utilise one or more of the following stream pro-
cessing frameworks: Apache Samza (2012) is a distributed stream processing frame-
work that uses the distributed publish-subscribe framework Apache Kafka (2012)
for messaging, and Apache Hadoop YARN (2011), a framework for distributed com-
puting of large data sets, to provide fault tolerance, processor isolation, security,
and resource management. Apache Storm (2015) and Apache Spark (2014) both
are distributed, scalable engines for large-scale data processing including stream
processing. Amazon Kinesis Streams (2014) is a cloud service to collect and process
large streams of data records in real time, where the service automatically scales
in the background. Amazon Lambda (2014) is a cloud service that enables to run
code on a function level without provisioning or managing servers. Functions can
be triggered from incoming requests or a stream of events. Similarly, Google Cloud
Dataflow (2015) is a fully-managed cloud service and programming model for batch
and streaming big data processing. An implementation of a WSF as proposed in
this thesis can utilise any of the reviewed stream processing platforms in order to
implement components and request flows.

25

Table 3.3: Categorisation of work related to Resource Dependency Processing.

Resource Dependency
Processing (3.4)

References

Job and Workflow
Scheduling

Malcolm, Roseboom, Clark et al. (1959), Kelley and
Walker (1959), Abrishami, Naghibzadeh and Epema
(2012), Chanas and Zieliński (2001), Masdari, ValiKardan,
Shahi et al. (2016), Maheshwari, Jung, Meng et al. (2016),
Pang, Wang, Cheng et al. (2015), Haeupler, Kavitha,
Mathew et al. (2012), Ajwani and Friedrich (2010) and
Bellman (1954)

Graph Processing Batarfi, Shawi, Fayoumi et al. (2015), Ching, Edunov,
Kabiljo et al. (2015) and Guo, Biczak, Varbanescu et al.
(2014)

Reactive Programming Salvaneschi, Margara and Tamburrelli (2015), Margara
and Salvaneschi (2014) and Salvaneschi and Mezini (2014)

Web Service Measures Du and Wang (2015), Songwattana, Theeramunkong and
Vinh (2014), Rajabi and Wong (2014), Poggi, Carrera,
Gavalda et al. (2014), Meusel, Vigna, Lehmberg et al.
(2014) and Ramachandran, Kim and Chaintreau (2014)

Traffic Modelling Dick, Yazdanbaksh, Tang et al. (2014), Chen, Ghorbani,
Wang et al. (2014), Zukerman, Neame and Addie (2003),
Chen, Addie, Zukerman et al. (2015), Donthi, Renikunta,
Dasari et al. (2014), Katsaros, Xylomenos and Polyzos
(2012) and Visala, Keating and Khan (2014)

3.4 Resource Dependency Processing
Chapter 6 presents algorithms for optimised resource dependency processing. This
section identifies related work in the categories of scheduling problems, graph pro-
cessing platforms, the reactive programming paradigm, the modelling of web service
parameters and traffic modelling.

3.4.1 Job and Workflow Scheduling

Chapter 6 identifies the processing of dependencies as an optimisation problem in the
domain of job and workflow scheduling. Job scheduling is an optimisation problem
where multiple jobs connected through constraints need to be processed in a valid
and fast manner as shown in Figure 3.3. The Program Evaluation and Research
Task (PERT) model by Malcolm, Roseboom, Clark et al. (1959) characterises the
Research and Development program of the U.S. Navy as a network of interrelated
events to be achieved in proper ordered sequence where the duration of the events
are time estimates from responsible technical persons. The Critical Path Method by
Kelley and Walker (1959) develops a topological representation of a project where
each job of the project is represented by an arrow and annotated with an execu-
tion time. If the maximum time available for a job equals its duration the job
is called critical as it causes a comparable delay in the project completion time.
Figure 3.3 shows a processing problem where the dependencies are directed from

26

left to right and the processing starts at Figure 3.3 (a). When all dependent jobs
are processed while maintaining the correct order as shown in Figure 3.3 (a,b,c),
the critical path highlights the maximum duration. Abrishami, Naghibzadeh and
Epema (2012) propose a new QoS-based workflow scheduling algorithm for utility
Grids based on a concept called Partial Critical Paths (PCP), trying to minimize
the cost of workflow execution while meeting a user-defined deadline. Chanas and
Zieliński (2001) identify that in practice, the activity duration times for critical path
planning are not always deterministic and presents two efficient methods of calcu-
lation of the path degree of fuzzy criticality. In the domain of workflow scheduling,
Masdari, ValiKardan, Shahi et al. (2016) present a comprehensive survey and ana-
lysis of scheduling schemes in cloud computing, where a scheduling scheme tries to
map the workflow tasks to multiple virtual machines based on different functional
and non-functional requirements. Maheshwari, Jung, Meng et al. (2016) present a
scheduling strategy that maps workflow tasks to multiple clusters and clouds with
optimised balancing. In this thesis, the PERT/Critical Path Problem is transferred
from the project management context and applied to dependency processing of web
resources. The processing of dependencies are the activities and the critical path
duration is the maximum dependency processing duration. This thesis does not
apply the concepts of fuzzy criticality or job deadlines as the approximation model
presented in Chapter 6 exhibits promising model fits. From workflow scheduling,
the basic structures such as a Directed Acyclic Graph (DAG) are used to declare
dependent tasks. The major objective in this thesis however, is not to distribute
work to multiple virtual machines as presented by Masdari, ValiKardan, Shahi et
al. (2016) and Maheshwari, Jung, Meng et al. (2016), but find an optimal forest of
processing trees from a dependency graph. The trees are then used to process de-
pendencies in an optimised fashion and calculate the maximum processing duration
as critical path. Pang, Wang, Cheng et al. (2015), Haeupler, Kavitha, Mathew et al.
(2012) and Ajwani and Friedrich (2010) show that the topological sorting of jobs for
correct orderly scheduling can be calculated incrementally in linear time. The dy-
namic programming method presented by Bellman (1954) solves complex problems
by breaking them down into a collection of simpler subproblems if the problems ex-
hibit the properties of an optimal substructure and are overlapping subproblems. In
Chapter 6, this thesis combines both topological sorting with dynamic programming
on a DAG structure to determine the critical paths of processing.

Figure 3.3: A critical path job scheduling problem where jobs run for a specified duration
and must run in a constrained order.

27

3.4.2 Graph Processing Platforms

Large scale graph processing platforms are distributed applications that implement
common graph processing algorithms in a scalable fashion. Batarfi, Shawi, Fayoumi
et al. (2015) provide a comprehensive survey over the state of the art of large scale
graph processing platforms and an experimental study of the GraphChi, Apache
Giraph, GPS, GraphLab and GraphX systems evaluating five common graph pro-
cessing algorithms. Facebook (Ching, Edunov, Kabiljo et al., 2015) improves the
usability, performance and scalability of the Apache Giraph system in order to use
it on Facebook-scale graphs of up to one trillion edges. Guo, Biczak, Varbanescu
et al. (2014) propose and apply an empirical method to obtain a comprehensive
performance study of the Apache Hadoop, YARN, Stratosphere, Apache Giraph,
GraphLab, and Neo4j platforms. Additionally, the authors implement general stat-
istics, breadth-first search, connected component, community detection and graph
evolution algorithms to evaluate them for multiple application domains with sizes up
to 1.8 billion edges and tens of GB of stored data. This thesis proposes to store the
dependency graph in one of the aforementioned large scale graph processing plat-
forms and use algorithms developed in this thesis to extract a forest of individual
dependency trees for each resource. Unfortunately, datasets from Batarfi, Shawi,
Fayoumi et al. (2015), Ching, Edunov, Kabiljo et al. (2015) and Guo, Biczak, Var-
banescu et al. (2014) can not be used in this thesis as they describe relationships
between data entities, e.g. users but not service resources as required for dependency
processing. Thus, this thesis utilises custom created service datasets.

3.4.3 Reactive Programming

The reactive programming paradigm presented by Salvaneschi, Margara and Tam-
burrelli (2015) is oriented around data flows and the propagation of changes and
thereby fits the requirements for dependency processing. The DREAM middle-
ware by Margara and Salvaneschi (2014) introduces and implements precise se-
mantics and consistency guarantees for reactive programming in distributed envir-
onments and studies the overheads introduced by different semantics. Salvaneschi
and Mezini (2014) propose a conceptual framework to improve reactive applications
in the object-oriented setting which traditionally use event systems and the observer
pattern. This thesis uses and applies reactive programming with eventual consist-
ency to automatically update resource dependencies with a middleware approach
observing incoming changes through requests.

3.4.4 Web Service Measures

In order to model and evaluate a resource dependency processing algorithm, this
section collects and presents related web services measures. Du and Wang (2015)
and Songwattana, Theeramunkong and Vinh (2014) improve the cache Hit-Miss

28

Ratio (HMR) with machine learning approaches and define typical values between
35% and 75% cache hits. Rajabi and Wong (2014) and Poggi, Carrera, Gavalda
et al. (2014) characterise the processing time of web applications as a Hyper-Erlang,
Weibull, generalised Pareto or Lomax distribution. Meusel, Vigna, Lehmberg et al.
(2014) and Ramachandran, Kim and Chaintreau (2014) classify the graph structure
in the web to be heavy-tailed and study the in-degree and out-degree distributions
of a large web crawls. In this thesis, the cache hit-miss ratio and processing duration
is modeled according to Du and Wang (2015), Songwattana, Theeramunkong and
Vinh (2014), Rajabi and Wong (2014), Poggi, Carrera, Gavalda et al. (2014), Meusel,
Vigna, Lehmberg et al. (2014) and Ramachandran, Kim and Chaintreau (2014).
However, the work on graph structures in the web studies the dependencies between
multiple services, where this thesis considers the dependencies within a single service.
Thus, Chapter 6 presents an analysis of existing service structures.

3.4.5 Traffic Modelling

For the evaluation of a resource dependency processing algorithm, different traffic
modelling techniques are reviewed and described in the following section. Dick,
Yazdanbaksh, Tang et al. (2014), Chen, Ghorbani, Wang et al. (2014), Zuker-
man, Neame and Addie (2003), Chen, Addie, Zukerman et al. (2015) and Donthi,
Renikunta, Dasari et al. (2014) find that request arrival times exhibit self-similarity
and use the following random processes for modelling: Fractionally Autoregress-
ive Integrated Moving-Average (FARIMA), Fractional Brownian Motion (FBM),
Poisson Pareto Burst (PPB), Poisson Lomax Burst (PLB) and Circulant Markov-
Modulated Poisson (CMMP). For resource popularity as identified by Katsaros,
Xylomenos and Polyzos (2012) and Visala, Keating and Khan (2014), the popular-
ity distribution can be modelled using a Zipf distribution with parameter ranges
between 0.64 and 0.84. This thesis uses all proposed random processes (FARIMA,
FBM, PPB, PLB, CMMP) for modelling the request arrival times and a Zipf distri-
bution for modelling the selection of resources.

3.5 Cloud Portability and Interoperability
In Chapter 7, a cloud portable and interoperable prototype of a WSF is presented.
This section identifies work related to the concepts of cloud portability, interoper-
ability and orchestration.

3.5.1 Portability and Interoperability

The National Institute of Standards and Technology (NIST) specifies that the cloud
computing model has five essential characteristics: On-demand self-service, broad
network access, resource pooling, rapid elasticity and measured service (NIST SP800-
145, 2011). To manage the entire lifecycle of infrastructure and applications in

29

Table 3.4: Categorisation of work related to Cloud Portability and Interoperability.

Cloud Portability and
Interoperability (3.5)

References

Portability and
Interoperability

NIST SP800-145 (2011), Amazon CloudFormation (2011),
Google Cloud Deployment Manager (2015), OpenStack
Heat (2014), Zhang, Wu and Cheung (2013), Di Martino,
Cretella and Esposito (2015) and OpenGroup Cloud Com-
puting Portability and Interoperability (2004)

Deployment and
Management Platforms

Binz, Breitenbücher, Kopp et al. (2014), TOSCA v1.0
(2013), OASIS (1993), Fehling, Leymann, Retter et al.
(2014), Katsaros, Menzel, Lenk et al. (2014), Qanbari,
Li and Dustdar (2014), Haupt, Leymann, Nowak et al.
(2014), CAMP v1.1 (2014), Binz, Breitenbücher, Haupt et
al. (2013), Kostoska, Gusev and Ristov (2014), Inzinger,
Nastic, Sehic et al. (2014), Petcu, Macariu, Panica et al.
(2013), Petcu, Martino, Venticinque et al. (2013), Andriko-
poulos, Gómez Sáez, Leymann et al. (2014), Loulloudes,
Sofokleous, Trihinas et al. (2015) and Ahn, Kim, Seo et al.
(2015)

Containers and
Cloud Orchestration

Docker (2013), LXC (2008), OpenVZ (2005), Merkel
(2014), Amazon EC2 Container Service (2014), Google
Container Engine (2014), IBM Containers for Bluemix
(2014), Docker Swarm (2015), Apache Mesos (2012) and
Google Kubernetes (2014)

the cloud, cloud providers offer interfaces such as Amazon CloudFormation (2011),
Google Cloud Deployment Manager (2015) or OpenStack Heat (2014). However,
the infrastructure and access to each of the providers is not standardised. Zhang,
Wu and Cheung (2013) identify that this prevents both the creation of portable
applications that can easily be migrated between providers, and services that are
dynamically hosted by multiple cloud providers as shown in Figure 3.4. Di Martino,
Cretella and Esposito (2015), OpenGroup Cloud Computing Portability and Inter-
operability (2004) and NIST SP800-145 (2011) classify between data, system and
application portability, and further service, application and platform interoperabil-
ity. Figure 3.4 shows an overview of the concepts of cloud portability in Figure 3.4
(a,b) and interoperability in Figure 3.4 (c). Data portability enables the trans-
fer of data objects between different cloud platforms. System portability enables
the migration of virtual machine instances, machine images and services from one
cloud provider to another. Application portability enables the reuse and migration
of applications and components across cloud providers. Service interoperability is
defined as the ability to use services across multiple cloud platforms through a uni-
fied management interface. Application interoperability is defined as the ability of
cloud-enabled applications to collaborate across different platforms. Platform inter-
operability is defined as the ability of platform components to interoperate. The
WSF prototype developed in Chapter 7 is both cloud portable and interoperable.

30

Figure 3.4: The concept of cloud portability and interoperability.

On the service level, a standardised container engine is used where Chapter 7 im-
plements the provider adapter pattern for the component interface as defined in
Chapter 4. On the application level, the universally applicable application interface
defined in Chapter 4 is implemented in Chapter 7 to ensure application portability.

3.5.2 Cloud Application Deployment and Management Platforms

Cloud application deployment and management platforms enable the management
and provisioning of cloud infrastructure. The Topology and Orchestration Specific-
ation for Cloud Applications (TOSCA) by Binz, Breitenbücher, Kopp et al. (2014)
and TOSCA v1.0 (2013) is a standard from the OASIS (1993) non-profit consor-
tium. It provides a standardised, well-defined, portable, interoperable and modu-
lar exchange format for the structure of application components, the relationships
among them, and their corresponding management functionalities. As identified
by Fehling, Leymann, Retter et al. (2014), the specification is a cloud application
management pattern. According to Katsaros, Menzel, Lenk et al. (2014), Qanbari,
Li and Dustdar (2014) and Haupt, Leymann, Nowak et al. (2014), the specification
defines a holistic way for cloud portability, interoperability and orchestration. The
OASIS (1993) Cloud Application Management for Platforms (CAMP) specification
(CAMP v1.1, 2014) is designed specifically for the PaaS service model where ser-
vices for different programming languages and application frameworks are offered.
Binz, Breitenbücher, Haupt et al. (2013), Katsaros, Menzel, Lenk et al. (2014)
and Kostoska, Gusev and Ristov (2014) have successfully implemented runtimes
for TOSCA containers to test the actual interoperability and portability features.
With MADCAT by Inzinger, Nastic, Sehic et al. (2014), the authors introduce a
methodology enabling the structured creation of cloud applications, addressing the
complete application development lifecycle. The Open Source API and Platform
for Multiple Clouds project (mOSAIC) by Petcu, Macariu, Panica et al. (2013) and
Petcu, Martino, Venticinque et al. (2013) proposes a vendor-agnostic and language-
independent set of open APIs supporting portability between clouds. Andrikopoulos,
Gómez Sáez, Leymann et al. (2014) create a technology-agnostic formal framework
that models, verifies and generates alternative scenarios for the distribution of an
application stack across cloud offerings and evaluate the optimal scenario given the
application needs in terms of operational expenses. Loulloudes, Sofokleous, Trihi-

31

nas et al. (2015) present an open source Cloud Application Management Framework
(CAMF) based on the Eclipse Rich Client Platform which facilitates cloud applic-
ation lifecycle management in a vendor-neutral way. Ahn, Kim, Seo et al. (2015)
extract a set of requirements from the examination of the existing rules and policies
in the public sector. This thesis does not provide an application management plat-
form for the cloud. It however depends on standards, such as TOSCA in order to
implement component interfaces in a reusable, portable and interoperable fashion.

3.5.3 Containers and Cluster Orchestration Frameworks

Linux containers enable a portable and efficient deployment of components that must
be orchestrated over multiple hosts or cloud services. Container implementations,
such as Docker (2013), LXC (2008) and OpenVZ (2005) provide a virtualisation
on the operating system level. In contrast to virtual machines, a container does
not need a hypervisor to virtualise hardware and all containers run in the same
kernel (Merkel, 2014). This makes containers an efficient alternative to virtual ma-
chines. Cloud providers offer container services, such as Amazon EC2 Container
Service (2014), Google Container Engine (2014) and IBM Containers for Bluemix
(2014) that are able to run containers in a universally defined format with cloud
portable and interoperable APIs. In this thesis, Docker (2013) is used to imple-
ment the prototype of a WSF in Chapter 7. In order to orchestrate a multitude
of containers, Docker Swarm (2015) is capable of turning a group of Docker en-
gines on multiple hosts into a single, virtual Docker engine. This enables to start
containers as if they were running on a single host and provides a unified API for
orchestration. Apache Mesos (2012) abstracts CPU, memory, storage, and other
compute resources away from machines (physical or virtual), enabling fault-tolerant
and elastic distributed systems to easily be built and run effectively. It supports ap-
plications such as Apache Hadoop YARN (2011), Apache Spark (2014) and Apache
Kafka (2012), allows to run custom Docker containers and provides a unified API
for resource management. Google Kubernetes (2014) is an open source orchestra-
tion system for Docker containers that handles scheduling onto nodes in a compute
cluster and actively manages workloads. This thesis uses Docker Swarm (2015) in
the implementation of the WSF prototype in Chapter 7, as the increased orchestra-
tion capabilities provided by Apache Mesos (2012) and Google Kubernetes (2014)
are not needed for the prototype. In production however, all cluster orchestration
frameworks can be used.

3.6 Open Research Questions
Table 3.5 presents the open research questions extracted from the literature review
in this chapter. The research questions are categorised by the sections in this chapter
that also represent the research chapters in this thesis. Each research question is

32

Table 3.5: Summary of open research questions.

ID Web Scaling Frameworks (3.2)
R4.1 What are the design goals for a conceptual architecture design?
R4.2 Which cloud architecture design patterns can be applied?
R4.3 Which modules are needed to enable automatic scaling?
R4.4 Which parameters are needed to manage scaling?
R4.5 Which minimal set of interfaces needs to be designed and implemented?
ID Request Flow (3.3)
R5.1 Which design pattern can be used for optimised resource management?
R5.2 How can components be composed and requests be flowed efficiently?
R5.3 Which interface extension is required to enable the optimised scheme?
R5.4 How can the performance be modelled analytically?
R5.5 Which metric enables to operate an application with optimal load?
R5.6 How is the real-world application performance of the proposed scheme com-

pared to a traditional approach?
ID Resource Dependency Processing (3.4)
R6.1 How can resource dependencies be measured and stored?
R6.2 What algorithm can be used to optimise the performance of processing?
R6.3 What effects have dependency graph measures on the performance?
R6.4 How can resource dependencies be generated?
R6.5 How well can the dependency processing duration be modelled?
R6.6 How is the performance compared with a typical traditional processing ap-

proach?
ID Cloud Portability and Interoperability (3.5)
R7.1 How can modules and components be designed in a portable and interoperable

fashion?
R7.2 What needs to be done in order to integrate a traditional app into a WSF?
R7.3 How well can the processing cost and storage space required for dependency

processing be modelled?
R7.4 How is the performance trade-off between processing cost and processing dur-

ation when using a dependency processing approach?

assigned a unique ID, where the number preceding the period represents the chapter
in which the research question is considered.

3.7 Theoretical Foundations
The novel contributions and ideas presented in this thesis are primarily based on
three theoretical foundations: Parallel computing, queueing theory and graph the-
ory. The parallel computing paradigm is based on the principle that a large com-
puting problem can be simplified by being divided into pieces and then individually
solved in parallel. For the scaling of web services this means that a stream of requests
that is too large to compute for a single server is divided into multiple streams, where
each server can operate on an individual, smaller sub-stream. Chapter 5 presents a
further enhancement to web service scalability by dividing the streams of requests
based on the type of the requests, which allows a parallel and decoupled execution

33

of read and write requests. The modelling in Chapter 5 has its foundations in the
queueing theory. Little’s Law (Little, 1961) states that the average number of cus-
tomers in a queue equals the arrival rate multiplied by the time spend in the queue.
For the performance modelling, where cloud provider services are abstracted as com-
ponents, this means that the average number of requests in a component denoted
as concurrency equals the average processed requests per second denoted as flow
multiplied by the processing delay of the component. Finally, Chapter 6 uses graph
theory for modelling the resource dependencies. The resources are represented by
nodes and the dependencies by edges. Further, shortest-path and longest-path al-
gorithms are used to evaluate properties of the dependencies and a topological sort
of the graph is used to determine the correct processing order.

3.8 Summary
This chapter has presented a literature review covering a large number of recent rel-
evant works and theoretical foundations of the project. It was first shown, that none
of the reviewed platforms and frameworks for scaling covers the full spectrum of fea-
tures required to efficiently scale web applications in a reusable fashion. All reviewed
auto scaling features are strictly limited and custom tailored to cloud providers im-
peding the creation of reusable scaling workflows. None of the reviewed caching
strategies and policies considers an explicit declaration of dependencies between re-
sources, although research suggests decreasing cloud storage prices. In regard to
performance modelling, the reviewed works use CPU, memory, networking and in-
put/output measures to evaluate performance, where this measures are not exposed
by managed services of cloud providers. Event stream processing frameworks provide
general platforms to distribute computing on huge clusters, however there are no
standardised frameworks that enable the processing of web requests. In terms of
resource dependencies, none of the reviewed work presents an approach where de-
pendencies within a single service are explicitly evaluated, defined and processed in
an optimised fashion. There exists a range of large scale graph processing platforms
that enable a distributed and scalable processing of dependency graphs. None of the
reviewed works applies a reactive programming model to automatically update re-
source dependencies. Finally, the concepts of cloud portability and interoperability
have been discussed. While all of the reviewed platforms and frameworks enable the
creation of reusable workflows to orchestrate infrastructure, none of them provides
interfaces to directly operate web applications nor has knowledge of an optimised
request flow.

34

4. Conceptual Architecture Design

4.1 Overview
In this chapter, a conceptual architecture design including required modules, inter-
faces, parameters and components valid for all implementations of WSFs is proposed.
In order to ensure feasibility of the presented conceptual design, the subsequent
Chapters 5, 6 and 7 propose and evaluate implementations of WSF key mechan-
isms. However, the conceptual design in this chapter is intended to serve as a basis
for a novel class of frameworks for scalable web services in cloud environments, where
different implementations can be optimised for special use cases. The literature re-
view in Chapter 3 identified five open research questions related to the conceptual
architecture design of WSFs:

• R4.1: What are the design goals for a conceptual architecture design?

• R4.2: Which cloud architecture design patterns can be applied?

• R4.3: Which modules are needed to enable automatic scaling?

• R4.4: Which parameters are needed to manage scaling?

• R4.5: Which minimal set of interfaces needs to be designed and implemented?

Each of the subsequent sections considers one of the open research questions. Fi-
nally, Section 4.7 provides answers to the aforementioned research questions and
Section 4.8 concludes the chapter and puts it in a greater context.

4.2 Proposed Architecture Overview and Design Goals
This section gives an initial overview of the proposed architecture and is further
dedicated to the first open research question R4.1: What are the design goals for a
conceptual architecture design?

4.2.1 Design Goals

The major design goal is to create an architecture that enables to build maintain-
able, automatable, scalable, resilient, portable and interoperable implementations
of WSFs. Firstly, components have to automatically adapt to dynamic workloads.
Fehling, Leymann, Retter et al. (2014) identify this as elastic management process.
Secondly, all communication with cloud providers needs to be abstracted in order
to ensure portability and enable interoperability. Thirdly, components have to be
checked for failures and replaced automatically. Fehling, Leymann, Retter et al.

35

Figure 4.1: Architecture overview of the proposed WSF that manages multiple compon-
ents and applications hosted by different cloud providers.

(2014) identify this as resiliency management process. Finally, a WSF implementa-
tion needs to be maintainable and scalable.

4.2.2 Proposed Architecture Overview

Figure 4.1 presents an initial overview of the proposed architecture that is used
throughout this chapter. The design patterns, modules and interfaces shown in
Figure 4.1 are elaborated on in the subsequent Sections 4.3, 4.4 and 4.6. The cloud
on the left side of Figure 4.1 presents the logical structure of a WSF, where the
modules within this cloud implement the core functionality of a WSF. The right side
of Figure 4.1 shows the components that are managed by a WSF. The components
provide services and functionalities needed to operate a full web application. One
type of component is the worker component at Figure 4.1 (g), which hosts the
application logic that is implemented with the help of a WAF. The worker component
joins a WSF with a WAF, where the worker logic is implemented by the WSF and
the application logic is implemented by the WAF.

4.3 Applied Cloud Architecture Design Patterns
The literature review in Chapter 3 identified multiple cloud architecture manage-
ment patterns (Fehling, Leymann, Retter et al., 2014) and architectural styles
(Young, 2010; Fowler, 2011). In combination with the aforementioned design goals,
this opens up research question R4.2: Which cloud architecture design patterns can
be applied?

4.3.1 Provider Adapter Pattern

Figure 4.1 (a) shows how modules implement interfaces that connect to modules
and components outside a WSF. This is done in order to provide a unified interface
to other modules inside a WSF. The underlying design pattern is identified as pro-
vider adapter pattern (Fehling, Leymann, Retter et al., 2014). For each used cloud

36

provider component, a provider adapter needs to be created. The provider adapter
transforms unified commands specified in the interface, so they can be executed
with the cloud provider’s API. Regarding the design goals for the architecture, this
ensures the portability and interoperability of the framework. Further details on
interfaces are given in Section 4.6.

4.3.2 Managed Configuration Pattern

Figure 4.1 (b) shows the storage of a managed configuration as identified by Fehling,
Leymann, Retter et al. (2014). In order to configure components in an automatable
fashion, the configuration is persisted in a central storage. The configuration is used
to provision new components as well as to adapt existing components. Regarding
the design goals for the architecture, this enables a full automation of provisioning.
Further details on the store module are given in Section 4.4.

4.3.3 Elastic Manager Pattern

In Figure 4.1 (c), the application of both the elastic manager pattern (Fehling,
Leymann, Retter et al., 2014), and the observer pattern is shown. Elastic man-
agement describes the continuous provisioning of components based on utilisation
metrics. Through the continuous observation of these utilisation metrics as shown
in Figure 3.1, algorithms in the manager determine the optimal number of compon-
ent instances. Based on the results of the algorithms and the current provisioning
status, a necessary change in provisioning is calculated. The manager itself does
however not carry out the changes. Regarding the design goals for the architecture,
this adapts components automatically to dynamic workloads. This thesis presents
an elastic management algorithm based on the optimal request flow in Chapter 5.
Further details on the watcher module are given in Section 4.4.

4.3.4 Command Query Responsibility Segregation and Flux Pattern

Figure 4.1 (d) shows the application of the CQRS pattern as identified by Young
(2010) and Fowler (2011). Additionally, Figure 4.1 (d) shows the application of the
CQRS-related Flux pattern as presented by Facebook Flux (2014). In the CQRS
pattern, the command and the query model are segregated in order to decouple
domains. This allows to use different models for updating and querying to maxim-
ise performance and scalability, provide a higher data model flexibility and simplify
complex data structures. A query model can provide much more data with com-
plex calculated data than the corresponding command model. This allows simple
updates with fewer data while providing detailed data on query at the same time.
The proposed architecture at Figure 4.1 (d) has segregated domains for retrieving
data through the metrics module, query data through the storage module and ex-
ecute commands through the actions module. The Flux pattern (Facebook Flux,
2014) defines a unidirectional data flow where commands always enter the system as

37

actions that are dispatched through the system. The proposed architecture exhibits
the same feature by allowing all provisioning actions strictly through the actions
module. Regarding the design goals for the architecture, this ensures the maintain-
ability of a WSF implementation. Further details on the action module are given in
Section 4.4.

4.3.5 Watchdog Pattern

In Figure 4.1 (e), the application of both the watchdog pattern (Fehling, Leymann,
Retter et al., 2014), and the observer pattern is shown. The watchdog pattern
ensures that in case of a failure or unavailability of a component the error is handled
automatically without human intervention. Based on monitored metrics, actions to
reprovision, reload or rollback components are triggered. Regarding the design goals
for the architecture, this ensures the resiliency of a WSF implementation. Further
details on the resilience module are given in Section 4.4.

4.3.6 Microservice Architecture Pattern

Figure 4.1 shows the application of the microservice architecture pattern as identified
by Fowler (2014) and Namiot and Sneps-Sneppe (2014). The presented architecture
proposes to structure all modules as a suite of small web services. Each service
component implements its autonomous module functionality that can utilise a self-
reliant service database. Regarding the design goals for the architecture, this ensures
the scalability of a WSF implementation. Further details on the implementation of
service modules are given in Chapter 7.

4.4 Modules Specification
The implementation of the aforementioned applied architecture design patterns
opens up research question R4.3: Which modules are needed to enable automatic
scaling? Hence, this section proposes a minimal module structure specification and
elaborates on the interplay in relation to the design goals. Table 4.1 provides an
overview of all proposed modules required to implement a WSF with the specified
design goals, however it can be extended by individual implementations of WSFs.

4.4.1 Storage Module

The storage module MS provides a shared data access component (Fehling, Ley-
mann, Retter et al., 2014). The storage is used to store component management
configurations, metrics retrieved by the metrics module MM and parameters set by
the framework interface module MI . Additionally, it provides read access for the
watcher module MW that observes component metrics and the framework interface
module MI that presents the current status of the system. The implementation can
be done using an IaaS compute unit with a custom database, or via a SaaS such

38

Table 4.1: Modules of a Web Scaling Framework.

Module Description
Storage Module (MS) Provides a shared data access for component management

configurations, component metrics and framework para-
meters.

Metrics Module (MM) Continuously collects metrics such as performance, failures
and availability from components.

Watcher Module (MW) Observes performance metrics and triggers provisioning
actions.

Resilience Module (MR) Observes failure and availability metrics and triggers ac-
tions to maintain component state.

Actions Module (MA) Defines available framework actions for component provi-
sioning and application deployment.

Provision Module (MP) Provides a unified interface for cloud provider communic-
ation and adapts cloud provider APIs.

Interface Module (MI) Implements the framework interface to allow a unified
management from external sources.

Worker Module (MWo) Processes requests with the help of the web application
that is implemented using a WAF.

as Amazon Web Services (2006) DynamoDB, Amazon Web Services (2006) Rela-
tional Database Service, Google Cloud Platform (2008) Datastore or Google Cloud
Platform (2008) SQL.

4.4.2 Metrics Module

The metrics module MM continuously collects metrics from the components and
passes them to the storage module MS for persistence. In order to be able to com-
municate with a multitude of cloud providers, the module implements the parts of
the component interface IC that consider metrics retrieval. The module contains
a scheduling part that orchestrates collection frequencies and multiple provider ad-
apters (Fehling, Leymann, Retter et al., 2014) that connect to cloud providers. The
implementation can be created with a custom IaaS compute unit that connects with
an existing SaaS such as Amazon Web Services (2006) CloudWatch or Google Cloud
Platform (2008) Monitoring.

4.4.3 Watcher Module

The watcher moduleMW observes the components metrics retrieved from the storage
module MS and triggers provisioning actions via the actions module MA. The
algorithm in the module continuously compares component provisioning metrics,
such as the number of machines in a component, with the current performance
metrics and targeted available performance metrics determined by the framework
configuration. One implementation of such an algorithm is given in Chapter 5 of this
thesis. Available parameters for configuring the targeted performance are elaborated
in Section 4.5. For the implementation, a custom component hosted by a IaaS needs

39

to be created as no provider IaaS implementations exist at the time of writing.

4.4.4 Resilience Module

The resilience module MR observes the components failures, availability and met-
rics it retrieves from the storage module MS. If a component is not reachable by
network, shows suspiciously high processing delays, reports hardware errors or is de-
tected to be misconfigured, the resilience module detects and acts on these system
changes to ensure a continuous operation of the system. Therefore, it automatically
triggers actions via the actions moduleMA, such as restarting a component, moving
a component to another cloud provider or deploying another version of a component
with a different configuration that is known to work from a previous operation. For
the implementation of the module, a custom component hosted by an IaaS needs
to be created as no cloud provider IaaS implementations exist with the required
functionality at the time of writing.

4.4.5 Actions Module

The actions module MA serves as a single origin for component provisioning (Face-
book Flux, 2014; Young, 2010; Fowler, 2011) and the application update transition
process as identified by Fehling, Leymann, Retter et al. (2014). Only the watcher
module MW , the framework interface module MI and the resilience module MR can
trigger actions. Actions are defined as a set of API calls and include actions to:

• Increase or decrease component performance by x units

• Start and stop entire component

• Move parts of or entire component to cloud provider y

• Deploy or upgrade application z

• Start and stop collection of performance metrics

The actions module dispatches component related actions to the provision module
MP and deployment related actions to the worker module MW . For the imple-
mentation, a custom framework component needs to be created and hosted by a
PaaS.

4.4.6 Provision Module

The provision module MP implements the provisioning part of the component in-
terface IC . It provides a unified interface for cloud provider communication by
implementing a multitude of provider adapters as identified by Fehling, Leymann,
Retter et al. (2014). For the implementation, a custom component deployed as IaaS
compute unit can be used. The component can utilise existing SaaS such as Amazon
Web Services (2006) CloudFormation or Google Cloud Platform (2008) Deployment
Manager.

40

Figure 4.2: Overview of the worker component that is joining the worker module and the
web application.

4.4.7 Interface Module

The interface module MI implements the framework interface IF to allow a unified
management of the framework from external sources. The module allows to cre-
ate, read, update and delete component configurations, framework parameters and
failure handling mechanisms via the storage module MS. Additionally, it is able to
dispatch actions to the actions module MA for optional manual triggering of com-
ponent provisioning and application deployment. For the implementation, a custom
component deployed as IaaS compute unit can be used.

4.4.8 Worker Module

The worker module MP runs inside a component and implements the application
interface IA as illustrated in Figure 4.2. At Figure 4.2 (a), the module pulls several
request from a pool of requests awaiting processing, e.g. a request queue. It then
processes the requests at Figure 4.2 (b) using an instance of the web application
that is implemented using a traditional WAF. The number and concurrency of re-
quests to be processed is determined according to the optimal performance range
elaborated in Chapter 5. For the implementation, a Linux container component in
conjunction with PaaS cloud processing platforms such as Amazon Web Services
(2006) Container Service or Google Cloud Platform (2008) Container Engine can
be used.

4.5 Scaling Parameters
Algorithms in a WSF base their scaling decisions on various parameters. This
opens up research question R4.4: Which parameters are needed to manage scaling?
This section identifies three types of parameters: Component parameters, system
parameters and traffic parameters, where Table 4.2 provides an overview of all three
categories.

4.5.1 Component Parameters

Component parameters describe the performance metrics, provisioning state, failures
and availability data that is collected for each component, respectively. Exemplary

41

Table 4.2: Framework parameters to manage a Web Scaling Framework.

Component Parameters Description
Machines The current number of machines in a component.
Target Machines The targeted number of machines in a component.
Request Flow/s The number of requests that flow through the com-

ponent per second.
Target Flow/s The desired target number of requests that flow

through the component per second.
Concurrency The current number of parallel component requests

that are not responded yet.
Optimal Concurrent
Range

The concurrency range for which the component de-
livers optimal flow.

Processing Delay The average time it takes the component to process a
request.

System Parameters Description
Sensitivity Influences the aggressiveness of the scaling actions.
Headroom The percentage of over-provisioning available for load

spikes.
Machines The current number of total machines in all compon-

ents.
Maximum Machines The maximum number of total machines in all com-

ponents.
Traffic Parameters Description
Requests/s The current number of incoming requests per second.
Target Flow/s The desired target number of incoming requests per

second.
Concurrency The current number of parallel incoming requests that

are not responded yet.

components are load-balancers, databases, queues, event propagation systems, graph
processing systems and the aforementioned worker component that contains web
application logic. As shown in Table 4.2, component parameters keep track of
the current number of component machines and provide storage for the watcher
module MW to save the targeted number of machines. The request flow through
the component describes the number of requests that enter and leave a component
per second. Similar to the target number of machines, the target request flow
describes the desired number of requests the component should be able to handle
in order to trigger provisioning actions. In addition to a concurrency parameter,
a component needs to provide the optimal concurrency range that is described in
detail in Chapter 5. The mean processing delay is needed in the watcher moduleMW

to provision the component and in the resilience module MR to ensure availability
and failure states. Chapter 5 further elaborates on the component parameters with a
detailed explanation of their influences on performance calculation and management.

42

Table 4.3: Minimum viable interfaces for a Web Scaling Framework.

Component Interface Description
Metrics Interface Collects performance, failure and availability data.
Provision Interface Adds/removes machines or increases/decreases In-

put/Output Operations Per Second (IOPS).
Framework Interface Description
Configuration Interface Creates and updates components and their configur-

ations.
Parameter Interface Manages system parameters for scaling.
Action Interface Lists and triggers available framework actions.
Application Interface Description
Deployment Interface Manages the lifecycle of a web application.
Request Flow Interface Sets the origin for requests and target for responses.

4.5.2 System Parameters

System parameters influence the overall behaviour of a WSF. Due to the dynamic
nature of web traffic, load often exposes bursts that heavily influence the short time
trend of the load. Thus, scaling actions can be delayed for a configurable amount
of time so the system is not over-provisioned. The sensitivity parameter influences
this aggressiveness of the provisioning actions. Further, as shown in Table 4.2,
the headroom parameter describes the percentage of over-provisioning. Similar to
the sensitivity parameter, this is done to be able to process requests with some
buffer that can be used for instantaneous load bursts. The machines and maximum
number of machines parameters are used to keep track of the current total number
of machines and set a limit on the maximum number of machines in the case of an
unexpected increase of traffic.

4.5.3 Traffic Parameters

Traffic parameters keep track of the total number of incoming requests per second
and the total number of requests that are currently processed. Additionally, they
allow to specify a target flow the system needs to be able to handle. This can be
used to prepare the infrastructure in the case of a planned increase of traffic, e.g.
when a certain social event is taking place.

4.6 Minimum Viable Interfaces
In order to communicate with the framework, components and the application, a
minimal set of interfaces is proposed. An instance of a WSF has the obligation to
implement at least the minimal set of interfaces. If the minimal set is not imple-
mented, the WSF is not viable for scaling. Thus, this thesis refers to the minimal
set as the Minimum Viable Interfaces (MVI), where Table 4.3 provides an overview
of all interface categories. The MVI however, can be extended in order to include
special functionality that differentiates WSFs from another. This opens up research

43

question R4.5: Which interfaces need to be designed and implemented? The inter-
faces are designed to follow the REST architectural style as defined in Chapter 2
and the exchanged format is JSON. This allows all modules implementing the in-
terfaces to be created as independent microservices that can be managed and scaled
individually.

4.6.1 Component Interface

As shown in Figure 4.1, the component interface IC abstracts communication between
cloud provider components and framework modules. Consequently, the component
interface is further subdivided into a metrics interface that is implemented by the
metrics moduleMM and the provision interface that is implemented by the provision
module MP .

4.6.1.1 Metrics Interface

The metrics moduleMM collects performance, failure and availability data from the
components and implements a provider adapter pattern as identified by Fehling,
Leymann, Retter et al. (2014). Thus, the metrics interface defines the actions the
metrics module MM needs to implement and adapt to the provider. For the WSF
proposed in this thesis, the minimal list of components required includes the load-
balancer LB, the dispatcher D, the resource storage RS, the queue Q, the workerW
and the event sytem ES components. For other implementations of WSFs however,
this list can be expanded. The proposed action and sample response to collect
performance data is defined as follows:

GET /:componentId/performance

{

"lastUpdated": 1452252926,

"machines": 3,

"iops": 10000,

"requestsPerSecond": 8563,

"concurrency": 480,

"meanProcessingDelayInMs": 23,

"optimalConcurrencyRange": [65, 925]

}

The machines and IOPS field depend on the type of component. A PaaS component
often can be provisioned using IOPS to abstract the actual number of machines
that run in the background while achieving the desired throughput. The optimal
concurrency range is a metric to identify the optimal load curve of a component.
It is elaborated in Chapter 5. The rest of the parameters are strictly based on the
component parameters defined in the previous section.
To collect failures, the proposed interface action is defined as:

44

GET /:componentId/failures

{

"lastUpdated": 1452252926,

"notifications": [

{

"id": "1buysgfut",

"date": 1452252302,

"type": "os.update.available",

"message": "Kernel update 4.3 is available, 4.25 is installed."

},

...

],

"errors": [

{

"id": "ut82v3v",

"date": 1452252568,

"type": "memory.full",

"message": "15.98GB of 16GB of Memory is used."

},

...

],

}

The response illustrates a list of notifications and errors. Notifications are inform-
ative messages that can be acted on. Errors are severe failures that must be acted
on. Each failure type helps to identify the type of the occured incidence, where the
message gives details in a human readable form.
To collect the availability of the component, an action representing a time series of
heartbeats is proposed as follows:

GET /:componentId/availability

{

"lastUpdated": 1452252926,

"delayInMs": 13,

"responded": true,

"timeseries": [

{

"id": "8sfydg",

"date": 1452252926,

"delayInMs": 13,

"responded": true

},

45

{

"id": "7g87gs",

"date": 1452252925,

"delayInMs": 19,

"responded": true

},

{

"id": "7gf7g7",

"date": 1452252924,

"delayInMs": 0,

"responded": false

},

...

]

}

The delay defines the healthiness of the component. This is achieved by sending
a heartbeat to the component and measuring the time it takes the component to
respond. If the component does not respond within a defined timeout, it sets the
responded field to false in order to highlight the unavailability of the component.

4.6.1.2 Provision Interface

The provision module MP manages the performance by adding/removing machines
or increasing/decreasing the IOPS that control the provisioned throughput of certain
PaaS, such as Amazon Web Services (2006) DynamoDB or Google Cloud Platform
(2008) Storage with on-demand I/O. The proposed action with the parameter body
sent to provision a component is defined as follows:

PUT /:componentId/provision

{

"machines": 4,

"iops": 20000,

}

As for the metric collection, the machines and IOPS field depend on the type of
component. For a PaaS-provisioned component the IOPS field is the key metric and
for machine based components, the machines field is used. The provisioning is ex-
ecuted via an extra resource that reflects the current provisioning target. The target
can deviate from the metrics collected via the metrics interface, as provisioning does
not happen instantaneous but is a process that takes a certain amount of time.

46

4.6.2 Framework Interface

As shown in Figure 4.1, the framework interface IF enables a unified communication
and management of the framework from external sources. The interface exposes
the current state of all component configurations, allows to set system parameters
that influence the scaling and enables to manually trigger actions to provision and
deploy applications. Consequently, the framework interface is further subdivided
into a configuration interface, a parameter interface and an action interface.

4.6.2.1 Configuration Interface

The storage module MS persists metrics and machine configurations for all com-
ponents. As to the metrics interface, the minimal list of components for the WSF
proposed in this thesis includes the load-balancer LB, the dispatcher D, the resource
storage RS, the queue Q, the workerW and the event sytem ES components, where
other implementations can expand on this list. To create or update a component
the interface action is defined as follows:

GET/PUT /components/:componentId

{

"id": "f78g236ffsd",

"type": "loadbalancer",

"name": "Europe Load Balancers",

}

Each component has a unique id and type field that expresses the component cat-
egory. Additionally, each component has a name field to make it identifiable by
humans. In order to retrieve all registered components, the interface action is pro-
posed as follows:

GET /components

[

{

"id": "f78g236ffsd",

"type": "loadbalancer",

"name": "Europe Load Balancers",

"configuration": {

"type": "service",

"provisioning": "iops",

"provider": "aws.elasticloadbalancer"

},

"metrics": {

"lastUpdated": 1452252926,

"machines": 0,

47

"iops": 10000,

"requestsPerSecond": 8563,

"concurrency": 480,

"meanProcessingDelayInMs": 23,

"optimalConcurrencyRange": [65, 925]

}

},

{

"id": "9o7sgeryyuf",

"type": "worker",

"name": "Northamerica Workers",

"configuration": {

"type": "container",

"provisioning": "machines",

"provider": "gcp.containerengine"

},

"metrics": {

"lastUpdated": 1452252945,

"machines": 9,

"iops": 0,

"requestsPerSecond": 34087,

"concurrency": 8876,

"meanProcessingDelayInMs": 104,

"optimalConcurrencyRange": [30, 4320]

},

...

}

]

The metrics object represents exactly the metrics defined in the component interface
IC . The configuration object represents exactly the configuration interface that is
defined as follows:

GET/PUT /:componentId/configuration

{

"type": "service",

"provisioning": "iops",

"provider": "aws.elasticloadbalancer"

}

The type field specifies the kind of the service and the provisioning field specifies
whether the component is provisioned with machines or IOPS. The provider field
identifies the cloud provider and service the component is running on.

48

4.6.2.2 Parameter Interface

The parameter interface exposes actions to read and manage system parameters as
defined in Section 4.5. The interface actions to read and update are proposed as
follows:

GET/PUT /parameters

{

"sensitivity": 1,

"headroom": 5,

"maxTotalMachines": 80

}

4.6.2.3 Action Interface

The action interface provides a list of actions from the actions module MA that can
be triggered using the interface module IM . To list all available actions, the interface
is proposed as follows:

GET /actions

[

{

"id": 16ffksd,

"description": "Updates the number of machines for a component"

"uri": "/actions/provisionComponentMachines",

"parameters": {

"componentId": "string",

"machines": "integer"

}

},

{

"id": hjf6g3,

"description": "Pulls the latest version of an application"

"uri": "/actions/deployApplication",

"parameters": {

"componentId": "string",

"applicationId": "string"

}

},

...

]

Each action provides a description for human identification, e.g. in a user interface.
The URI field points to the resource that executes the action. The parameter field
provides the necessary parameters needed to trigger the action.

49

In order to trigger one of the listed actions, e.g. the deployment of an application,
the interface is defined from the list as follows:

POST /actions/deployApplication

{

"componentId": "7g2783g",

"applicationId": "98g237j"

}

4.6.3 Application Interface

As shown in Figure 4.1, the application interface IA abstracts communication between
the worker module MWO and the web application that is created using a traditional
WAF. Additionally, it defines actions for the deployment of the application. Con-
sequently, the application interface is further subdivided into a deployment and a
request flow interface that both are implemented by the worker module MWO.

4.6.3.1 Deployment Interface

Each worker moduleMWO that runs in a component manages exactly one instance of
a web application. The deployment interface defines all actions needed to control the
lifecycle of the application. In order to deploy an application to the latest version,
the interface proposes an action as follows:

POST /deploy

{

"version": "1.3.2.7",

"hash": "1530b1ff31fa4b16299470f88d1279483ad06fdd",

"repository": "ssh://deploy@repos:app1.git"

}

The body specifying the exact version, hash of a Version Control System (VCS) com-
mit and repository location is optional and allows a flexible deployment to update
and test different application versions. In the case of a failed deploy, the interface
proposes an action to rollback to the previous working application version as follows:

POST /rollback

4.6.3.2 Request Flow Interface

As shown in Figure 4.2, the worker module MWO pulls requests from a pool of
processable requests, has them processed using its designated web application and
finally redirects the response so it can be returned to the client. The proposed action
sets the URIs for the requests and the responses as follows:

50

PUT /flow

{

"requests": {

"componentId": "g28d397sik",

"uri": "/pool/of/requests",

"type": "aws.elasticqueue"

},

"responses": {

"componentId": "8f7gliugdy",

"uri": "/channel/for/responses",

"type": "aws.eventsystem"

}

}

Both, the requests and the responses objects define the components that are used
to retrieve and put data with a URI and a type that identifies the kind of the
component. This allows the worker to implement multiple mechanisms for pulling
and pushing requests between components.

4.7 Discussion
In this chapter, a novel conceptual architecture design valid for all implementations
of WSFs has been presented. With respect to R4.1: What are the design goals
for a conceptual architecture design?, the major identified design goal was to create
an architecture that enables to build maintainable, automatable, scalable, resili-
ent, portable and interoperable implementations of WSFs. With respect to R4.2:
Which cloud architecture design patterns can be applied?, the provider adapter pat-
tern, the managed configuration pattern, the elastic manager pattern, the command
query responsibility segregation and Flux pattern, the watchdog pattern and the
microservice architecture pattern were applied to the conceptual architecture. Each
of the applied module-level patterns is dedicated to provide a single required func-
tionality that is implemented by a module of the framework. In consequence, each
module is required to implement the identified design goals of a maintainable, auto-
matable, scalabe, resilient, portable and interoperable implementation of a WSF.
With respect to R4.3: Which modules are needed to enable automatic scaling?, the
architecture was designed to use a storage module, a metrics module, a watcher
module, a resilience module, an actions module, a provision module, an interface
module and a worker module in order to separate the concerns of implementation.
With respect to R4.4: Which parameters are needed to manage scaling?, parameters
were divided into component parameters, system parameters and traffic parameters
to configure and manage scaling. With respect to R4.5: Which minimal set of
interfaces needs to be designed and implemented?, a minimal viable set of interfaces

51

has been presented that includes component interfaces, framework interfaces and
application interfaces.

4.8 Summary
In conclusion, it was shown that the complex matter of web application scaling can
be solved by many possible implementations. The presented conceptual architec-
ture is proposed to serve as a framework for all implementations that can share a
common understanding of modules, components, parameters and interfaces. The
interface definitions in this chapter provide a minimal definition of interfaces that
are at least required. For enhanced WSF functionalities, the interfaces need to be
extended as presented in Chapter 5 and Chapter 6 of this thesis, where the worker in-
terface is extended to provide access to an optimised resource dependency processing
mechanism. Additionally, this chapter does not make any assumptions on the setup
and interplay of framework components, nor an optimal routing of requests between
the components. Thus, in Chapter 5 an optimised approach to setup components
and route requests is presented.

52

5. Request Flow Optimisation Scheme

5.1 Overview
In this chapter, a novel design pattern for resource storage and management, and
an optimised request flow scheme between components is presented. The Perman-
ent Resource Storage and Management (PRSM) pattern enables all resources to be
fetched without prior processing, where the processing step is shifted to a manage-
ment model. The flow scheme presents a novel composition of components, enabling
a performance optimised routing of requests. A mathematical model used for per-
formance rating is developed and evaluated on the Raspberry Pi computing cluster
Pi-One presented in Chapter 2. Traffic traces from over 25 million real-world applic-
ations are analysed and evaluated on the cluster to compare the WSF performance
with a traditional scaling approach. A resource interface used to declare the exist-
ence and dependencies between resources is designed to extend the worker interface
presented in Chapter 4. The literature review in Chapter 3 identified six open re-
search questions related to the composition of components and optimised routing of
requests between them:

• R5.1: Which design pattern can be used for optimised resource management?

• R5.2: How can components be composed and requests be flowed efficiently?

• R5.3: Which interface extension is required to enable the optimised scheme?

• R5.4: How can the performance be modelled analytically?

• R5.5: Which metric enables to operate an application with optimal load?

• R5.6: How is the real-world application performance of the proposed scheme
compared to a traditional approach?

The remainder of the chapter is organised as follows: In Section 5.3, a novel design
pattern for optimised resource management is proposed, while in Section 5.4 a con-
crete scheme for composing components and routing requests is derived. Section 5.5
develops the models for the scheme and Section 5.6 evaluates the models with the
computing cluster. Section 5.7 outlines the results and provides answers to the
aforementioned research questions. Finally, Section 5.8 concludes the chapter with
a perspective on the subsequent chapters.

5.2 Motivations and Objectives
The conceptual architecture presented in the previous Chapter 4 proposes an ab-
stract framework specification with modules, interfaces, parameters and compon-

53

ents. It however makes no assumptions on the composition of the components that
process and serve the requests, nor the sequence of components the requests are
flowing through. In order to adapt to the complex application requirements and in-
creasing load generated by mobile devices, a series of architectural styles and design
patterns have been identified in Chapter 2, 3 and 4. The microservice architectural
style (Fowler, 2014; Namiot and Sneps-Sneppe, 2014) divides complex web applic-
ation into smaller, manageable units. The CQRS pattern as identified by Young
(2010) and Fowler (2011) segregates the domain model of an application into a
query model and a command model to decrease complexity. The Facebook Flux
(2014) pattern defines a unidirectional data flow where commands always enter the
system at a single location and are then dispatched through the system in order to
reduce complexity. Consequently, all of the aforementioned patterns help to reduce
the complexity of applications. In order to reduce the amount of requests that have
to be processed by a web application, a caching layer is introduced as presented
in Chapter 2. By caching responses for requests, a response matching a request
description can be delivered to the client without prior processing. As the contents
of a web application can grow to large amounts of data, not all possible responses
are cached. The caching strategies and policies identified in Chapter 2 consider
the complex matter of finding the best responses to keep in the cache, so requests
must be processed as seldom as possible. When the cache is full, most dispensable
responses are evicted from the cache. This cache eviction implies two major issues:
Response times are unpredictable and responses must be calculated multiple times
although the underlying data has not changed. At the same time, Bocchi, Mellia
and Sarni (2014) and Han, Lee, Shin et al. (2012) identify that prices in cloud stor-
age are expected to decrease. This leads to the conclusion, that storage of resources
will become cheaper than the recurrent processing and purging when using partial
caching. Consequently, this chapter describes the design, implementation and eval-
uation of the novel PRSM design pattern. It addresses the aforementioned issues by
examining the research questions given in the first section of this chapter.

5.3 Permanent Resource Storage and Management Pattern
Resources of web applications are constantly read, created, updated and deleted.
With increasing load, the create, update and delete mechanisms however incur the
major processing power. This leads to major scaling problems and opens up research
question R5.1: Which design pattern can be used for optimised resource manage-
ment?

5.3.1 Motivation

In this section, the novel Permanent Resource Storage and Management (PRSM)
(read prism) pattern is presented. It is based on the three major ideas and assump-

54

Figure 5.1: Overview of the proposed Permanent Resource Storage and Management
(PRSM) pattern.

tions:

1. A read of a resource is more time critical than an update

2. Resources are much more often read than updated or deleted

3. Storage pricing is low and expected to further decrease

The first idea stems from the fact that a user requesting a resource expects a timely
response with new information. When a user updates or deletes a resource, the new
desired state of the resource is already present in the client. This allows a client to
optimistically update the representation the user sees, while waiting for confirmation
from the web service. The second assumption depends on the type of an applica-
tion, but is expected to be true for most web applications. As most traffic traces
from applications are kept private, there is only sparse data present to support this
assumption. However, all traffic traces examined in the subsequent sections of this
chapter present read-heavy traffic characteristics. Additionally, Section 5.5 and 5.6
show up to which degree of read versus processing requests an implementation of
the PRSM pattern is viable. The third assumption is primarily identified by Bocchi,
Mellia and Sarni (2014) and Han, Lee, Shin et al. (2012) and a further supported
by a study of current storage prices of major cloud providers such as Amazon Web
Services (2006), Google Cloud Platform (2008), Microsoft Azure (2010) and IBM
Bluemix (2014).

5.3.2 Proposed Pattern

Figure 5.1 illustrates the proposed pattern. When a request arrives that needs
processing so it can create, update or delete a resource it is first handled by the
management model shown in Figure 5.1 (a). The management model checks the
resource meta storage at Figure 5.1 (b,c) for related resources. It then performs the
updates of all affected resources in the correct order and stores the results in the
resource storage at Figure 5.1 (d). The resource meta storage at Figure 5.1 (c) stores
resource dependencies that have to be updated when a resource is updated. The
management of the resource meta storage is executed by the management model.

55

When a request arrives that needs to read a resource, it is handled by the query
model at Figure 5.1 (e). The query model looks up the current representation of
the resource from the resource storage at Figure 5.1 (f,g) and returns it without
further processing. Generally, the proposed pattern is an extension to the CQRS
pattern where the query model simply returns current representations of resources.
The management model implements the CQRS command model that keeps the
resources up-to-date in the background. The update mechanism is based on the
concept of eventual consistency. A change in the system is not necessarily reflected
immediately in a subsequent read, however is guaranteed to be reflected at some
future point in time.

5.3.3 Advantages

The proposed pattern exhibits the following advantages over traditional caching
approaches:

1. Read response times are constant for all requests

2. Only requests that need processing are sent to the web application

3. Systems can be divided into distinct, individually scalable read and processing
subsystems.

4. Changes are processed only exactly once for the whole system

In contrast to the first advantage, with a traditional caching approach it is not known
whether a response is cached or not. This leads to unpredictable response times as
some responses might need complex and time-consuming reprocessing on the fly. Ad-
ditionally, it directly influences the user experience with the current total processing
performance. When the processing is done in the background as proposed with the
PRSM pattern, total processing performance only influences the time changes need
to be reflected in the resource storage. With a dedicated resource storage com-
ponent, the time to request the unchanged representations remains constant. In
contrast to the second advantage, traditionally the web application implements a
caching mechanism. This means that requests where responses are cached, have a
negative influence on the processing performance as they are handled by the same
application. With the PRSM pattern, all read requests are persisted by convention
so they can directly be responded from the storage and not the application. In
contrast to the third advantage, traditionally all requests are handled by the same
application so the scaling of individual subsystems is not possible. With the PRSM
pattern, both the read and processing capacity can individually be scaled. Addition-
ally, it is possible to migrate or even switch off the processing subsystem while the
read subsystem remains unconcerned. In contrast to the fourth advantage, caching
mechanisms regularly evict objects from the cache due to storage space constraints.
This means that resources that have been processed and cached previously need to

56

Figure 5.2: Proposed and traditional component composition and request flow scheme.

be reprocessed. During the lifecycle of an application, this can happen frequently
where the exact same processing action is repeated each time. With the proposed
PRSM pattern, changes are guaranteed to be processed only once as no resource
eviction mechanisms are applied. The remainder of this chapter models and evalu-
ates a concrete implementation of the proposed PRSM pattern, where in Chapter 6
mechanisms for an efficient processing subsystem are presented.

5.4 Proposed Scheme Implementation
The proposed PRSM pattern opens up research question R5.2: How can components
be composed and requests be flowed efficiently? Consequently, this section presents
a component composition and request flow scheme that implements the PRSM pat-
tern. The proposed scheme is able to calculate and optimise the overall throughput
of a web service. In order to compare the performance of the scheme, a traditional
composition and flow approach is used. The performance of both approaches is
modelled and evaluated in the subsequent Section 5.5 and 5.6.

5.4.1 Traditional and Proposed Scheme Comparison

As reference architecture the traditional scheme ST is composed from the two-tier
pattern Fehling, Leymann, Retter et al. (2014) that was introduced in Section 2.7.3.
Figure 5.2 shows the utilised components with a load balancer LB, an application
A for the presentation and business logic tier and a cache C for the data tier. The
application component A runs an implementation of a web application that is created
using a WAF. The processing of requests follows the graph with the edges ST =

{(LB,A), (A,C), (C,A), (A,LB)}. The proposed scheme ST presented in Figure 5.2
uses more components and a different composition than the traditional scheme ST .
It implements the PRSM pattern to combine a WSF with a WAF. Figure 5.2 (a-e)
illustrates the components the proposed scheme adds to the traditional scheme ST :
A request queue Q, a dispatcher D, an event system component ES and a worker
component W that embeds an implementation of a web application A.

57

5.4.2 Request Flow

The illustrated composition of components (Figure 5.2 (a-e)) is created with two
major design goals: optimised performance and enhanced scalability. The approach
to optimising the performance is to minimise the request flow graph for every request
by implementing the PRSM pattern. Figure 5.2 (a-e) illustrates the detailed flow of
a request through the components: Requests enter the system through multiple load
balancers LB (Figure 5.2 (a)). The load balancers LB forward the request to one
of the dispatchers D. The dispatcher D now decides whether the request is a read
request RR or a processing request RP . Read requests RR are determined by the
HTTP methods that guarantee to be safe as described in Section 2.2.1 (GET, HEAD
and OPTIONS do nothing but retrieve content without side effects). Processing
requests RP are requests with all other HTTP methods that by definition change
content on the server. Read requests RR are routed to the read subsystem SR which
is a graph with the directed edges SR = {(LB,D), (D,RS), (RS,D), (D,LB)}
(Figure 5.2 (a,b). Processing requests RP are routed to the processing subsystem
SP where SP = {(LB,D), (D,Q), (Q,W), (W,A), (A,W), (W,ES), (ES,D),
(D,LB)} (Figure 5.2 (a-e)). This is only possible as by definition all deliverable
resources are stored in the resource storage RS. Therefore, for a read request RR

the dispatcher D looks up the storage key including possible fragments and delivers
the response. Processing requests RP always need to be processed, so the dispatcher
D puts them in the queue Q and listens for the response from the event system
ES. At Figure 5.2 (c), a worker W with free resources eventually pops the request
from the queue Q. The worker W has the request processed by the app A and then
publishes the response to the event system ES (Figure 5.2 (d)) where the dispatcher
D is waiting for it. Finally at Figure 5.2 (e), the dispatcher D delivers the response
back to the client (Figure 5.2 (h)). With this implementation, both subsystems can
be scaled independently on a component level.

5.4.3 Resource and Dependency Processing Scheme

In order to use the proposed scheme, all deliverable resources need to initially be
put in the resource storage RS. This requires the creation of an index of all avail-
able resources before the system can go into operating state. In Chapter 7, this
initial storage fill is elaborated further. To maintain an updated resource state, a
management model as proposed by the PRSM pattern is implemented.

5.4.3.1 Synchronous and Asynchronous Processing Phase

Section 5.3 proposes that the management model works in the background and
thereby only eventual consistency can be guaranteed. However, for a web service
action that processes a resource and afterwards reads this resource it is not guaran-
teed that the resource is already processed and updated in the storage. Depending

58

Figure 5.3: Sequence diagram of the resource and dependency processing mechanism
implementing the management model of the PRSM pattern.

on the current load of the management model, the change can take more or less
time to process. To address this, the proposed scheme defines a synchronous and
an asynchronous phase in dependency processing. In the synchronous phase, the
worker ensures to stall the response until all dependencies are processed. The asyn-
chronous phase runs in parallel and has no effect on the response time. With this
approach, actions that require strong consistency because they subsequently read
an updated response can define synchronous dependencies. Resources that must be
updated but do not need to be finished by the time of the response can be defined
as asynchronous dependencies.

5.4.3.2 Processing Scheme

Figure 5.3 presents a sequence diagram of the processing scheme. The dispatcher
D puts requests that need processing into the queue Q. If a worker has available
resource to process a request, it pops a request from the queue at Figure 5.3 (a)
and processes it synchronously at Figure 5.3 (b). In the parallel processing section
Figure 5.3 (c-f), the worker W selects a request that needs processing by the app A
(Figure 5.3 (c,e)) and initiates the request. The app A then processes the request.
During processing, it pushes updated contents to the storage. Additionally, it de-

59

clares its synchronous and asynchronous updates at Figure 5.3 (d,f) before it returns
the response to the worker. This is repeated until all synchronous updates are pro-
cessed. Finally, the response to the initial request is put into the event system at
Figure 5.3 (g). With this approach, the asynchronous dependencies are decoupled
from the original request and processed when the system has available resources. A
general goal to minimise the response time for a request is to keep the number of
synchronous updates as low as possible. This allows the processing of dependencies
to happen in the background, while the response to the initial request can be sent
out immediately.

5.4.4 Resource Interface

In the conceptual architecture design at Section 4.6, a set of minimal viable interfaces
has been designed. The interfaces however do not specify how resources and their
dependencies can be registered or stored which opens up research question R5.3:
Which interface extension is required to enable the optimised scheme? Consequently,
this section provides an interface extension to the proposed worker interface that
allows to manage the resources. The resource interface is essential to the composition
and request flow scheme proposed in this chapter, however not required for other
implementations of WSFs. The proposed resource interface is divided into a storage
interface and a meta interface that are presented in the subsequent sections.

5.4.4.1 Storage Interface

As shown in Figure 5.3, an application needs to be able to put resource into the
storage via the worker. Hence, the storage interface proposes an action as follows:

PUT/DELETE /store/:resourceId

// resource content line 1

// resource content line 2

// resource content line 3

// ...

The resource id field can be of any form, e.g. an URI. The body of the request simply
contains the contents to store or update. If a resource does not exist, it needs to be
created, if it exists it needs to be updated. On delete, no request body needs to be
specified.

5.4.4.2 Meta Interface

Based on the PRSM pattern, the worker stores the meta information about re-
sources and their dependencies in order to manage the changes correctly. Hence,
the dependency interface proposes an action as follows:

PUT/DELETE /meta/dependency/:resourceId

60

[

{ "resourceId": "/sitemap", "type": "async" },

{ "resourceId": "/posts", "type": "async" },

{ "resourceId": "/posts", "type": "sync" },

...

]

The array in the body defines the direct dependencies of the resource id with their
type. From this, the worker defines a dependency graph which is examined in detail
in Chapter 6. Additionally, the application can manually define dependencies that
are considered only for the active request. For this, the interface action is proposed
as follows:

POST /meta/update/:resourceId

[

{ "resourceId": "/sitemap", "type": "async" },

{ "resourceId": "/posts", "type": "async" },

{ "resourceId": "/posts", "type": "sync" },

...

]

The worker merges these dependencies into the dependency graph and processes the
requests according to Figure 5.3.

5.5 Analytical Performance Modelling
A model that allows to calculate performance based on certain parameters enables
to analyse the differences between a traditional scheme and the scheme proposed
in this chapter. This opens up research question R5.4: How can the performance
be modelled analytically? Consequently, in this section mathematical performance
models for a component, the composition of multiple components, the performance
comparison of two compositions of components, and the performance optimisation
of a component are developed.

5.5.1 Performance Goals

The general performance goals for the proposed scheme are either the reduction
of the number of total machines M needed to satisfy a desired target request flow
F or in reverse the increase of the request flow F with a given number of total
machines M . Thus, models for the traditional scheme ST and the proposed scheme
SP are developed. Generally, it is aimed to achieve that FP > FT with equal M or
MP < MT with equal F .

61

Table 5.1: Component parameters that are used to describe and model the performance
of a single component x.

Goal oriented Variable Description
Request Flow/Second fx ∈ [0,∞] The requests that flow through a com-

ponent in one second.
Target Flow/Second tx ∈ [0,∞] A desired target fx for a component.
Performance based Variable Description
Network Delay dn,x ∈ [0,∞] in s The time it takes a request to travel

the full network stack.
Network Delay Gain dg,x ∈ [0,∞] in s The linear or quadratic time factor by

which dn,x increases.
Lookup Delay (ST) dl,x ∈ [0,∞] in s The time it takes the app A to lookup

a resource in the resource storage RS.
Processing Delay dp,x ∈ [0,∞] in s The time it takes a component to pro-

cess a request.
Dependency
Processing Delay

ddp,x ∈ [0,∞] The time needed to process dependen-
cies a request.

Size Delay ds,x ∈ [0,∞] in s The time a single kilobyte adds to the
delay.

Workload based Variable Description
Concurrent Users cx ∈ [1,∞] The number of concurrent users or

connections.
Size sx ∈ [0,∞] in kB The size of a single request-response

round-trip.
Deployment based Variable Description
Machines mx ∈ [1,∞] The number of machines that are used

for one component.

5.5.2 Component Models

As a first step, the performance of a single component is modelled that later is
composed to a larger system.

5.5.2.1 Parameters

For the model, each component has its own set of parameters denoted in Table 5.1.
Component parameters are not valid for the whole composition as they are influenced
by the individual routing and processing of a component. By convention, lower case
variables are used whenever a parameter or model belongs to a component. In a
composition, a component is identified by the subscript x which serves a placeholder
for a component abbreviation such as LB, D or W .

5.5.2.2 Delay Factors

A request flowing through a component x is delayed by different factors. The model
takes this into account by calculating the processing-, request size- and network

62

10 20 30 40 50

0.2

0.4

0.6

0.8

1.0
ndn,x,range

Data ndn,x,quadratic

Model ndn,x,quadratic

Data ndn,x,linear

Model ndn,x,linear

Delay

Concurrency

Figure 5.4: Normalised measurements and model of the linear and quadratic network
delay.

delays:

dP,x = dp,x + ddp,x (5.1)

dS,x = ds,x · sx (5.2)

For the network delay two different developments are observed from measured data
that is illustrated in Figure 5.4:

dN,x =


cx · dg,x
mx

+ dn,x, if linear (5.3a)

c2x · dg,x + dn,x
mx

, if quadratic (5.3b)

For the measurements, requests with increasing concurrency are issued to both a
resource storage component RS and an application component A. For the resource
storage component a simple ping command is sent, where the resource storage re-
sponds with a pong command. For the application component a simple empty
request is sent, where the application replies with an empty response. This is done
to eliminate any processing and size related delays. The results show that for the
resource storage component RS a linear development of the delays can be observed
(Figure 5.4), while for the application component A a quadratic development of the
delays can be observed. This stems from the increased complexity of the application
component A, while the resource storage component RS provides a constant lookup
time through distributed hashing. The data lines in Figure 5.4 are averages from 20
test runs for both the linear and the quadratic development. Despite the increased
complexity, both models are developed and allow the user to select the appropriate
accuracy. If simplicity is chosen over accuracy, the linear version can be used only.

63

Otherwise, the delay model is selected by the model fit.

5.5.2.3 Maximum Request Flow

To calculate the requests that can flow through a component per second, the concur-
rency is divided by the sum of all component delay factors. Adding more machines
to the component increases the flow fx by mx to a maximum:

fx =
cx ·mx

dP,x + dS,x + dN,x

(5.4)

As the performance improvement is not linear with mx, dN,x increases with mx and
thereby degrades the performance.

5.5.2.4 Machines for Target Flow

To satisfy a target flow fx = tx, the number of machines a component uses needs
to be adapted. It can be calculated by solving fx from (5.4) for mx in the linear
case l and the quadratic case q, where the processing, size and network delays are
substituted with their corresponding full representations from (5.1), (5.2), (5.3a)
and (5.3b). Please note, that a and b represent substitutions for display purpose
only:

al = dp,xtx + ddp,xtx + ds,xsxtx

bl =
√
tx(4c3xdg,x + 4cxdn,x + (dp,x + ddp,x + ds,xsx)2tx)

aq = dn,xtx + dp,xtx + ddp,xtx + ds,xsxtx

bq =
√
tx(4c2xdg,x + (dn,x + dp,x + ddp,x + ds,xsx)2tx)

mt,x =

⌈
1

2cx
(al + bl)

⌉
, or

⌈
1

2cx
(aq + bq)

⌉
(5.5)

For the traditional scheme ST : ddp,x = 0, as the traditional scheme does not apply
any dependency processing.

5.5.3 Composition Models

The composition models compose the individual components into a larger system.

5.5.3.1 Parameters

The parameters denoted in Table 5.2 are valid for a whole composed system of
components. By convention, capital notation is used whenever a parameter or model
belongs to the whole composition.

5.5.3.2 Components and Subsystems

Two compositions of components are proposed: The traditional scheme ST and
the proposed scheme SP . The traditional scheme ST uses the components CT =

64

Table 5.2: Composition parameters that are used to describe and model the performance
of the composition of multiple components.

Goal oriented Variable Description
Request Flow/Second F ∈ [0,∞] The requests that flow through all

components in one second.
Target Flow/Second T ∈ [0,∞] A desired target F for the whole

system.
Workload based Variable Description
Read/Processing Ratio RPR ∈ [1, 0] The relation between read re-

quests RR and processing re-
quests RP .

Cache Hit/Miss Ratio (ST) HMR ∈ [0, 1] The relation between cache hits
and cache misses.

Deployment based Variable Description
Machines M ∈ [1,∞] The number of total machines

that are used for the whole sys-
tem.

Machine-Quantity Tuple MQT
= (mx | x ∈ CX)

Lists number of machines for each
component in a composition X.

(LB,A,C). The proposed scheme SP uses the components CP = (LB,D,RS,Q,W,ES).
For the model the components need to be separated by read subsystem SR and pro-
cessing subsystem SP as illustrated in Figure 5.2:

CTSR,SP
= (LB,A) (5.6)

CTSR
= (C) (5.7)

CPSR,SP
= (LB,D) (5.8)

CPSR
= (RS) (5.9)

CPSP
= (Q,W,ES) (5.10)

5.5.3.3 Maximum Request Flow

The maximum request flow F predicts the maximal throughput of ST or SP for a
machine-quantity tuple MQT . In the traditional scheme ST , requests can be either
served (cache hit) or need to be processed (cache miss) depending on the cache C’s
cache hit/miss ratio HMR:

dp,A = (RPR · dl,A) + (dp,A −RPR ·HMR · dp,A) (5.11)

The concurrency at the cache C depends on the number of machines and concurrency
of the application A and the read/processing ratio RPR:

cC = mA · cA ·RPR (5.12)

65

The maximum flow is determined by the slowest component of a composition:

FT = min{fx | x ∈ CTSR,SP
,
fx

RPR
| x ∈ CTSR

} (5.13)

For the proposed scheme SP , both the read subsystem SR and the processing sub-
system SP have to be considered:

FP = min{fx | x ∈ CPSR,SP
,
fx

RPR
| x ∈ CPSR

,− fx
−1 +RPR

| x ∈ CPSP
} (5.14)

5.5.3.4 Machines for Target Flow

The machines equation calculates the machine-quantity tuple MQT for a certain
target flow F = T in a composition. For ST , the app delay dp,A is used as shown
in (5.11) and the cache C is only hit by read requests RR:

tC = RPR · T (5.15)

The quantities are calculated for every component:

MT,T,MQT = (mx | x ∈ CT) (5.16)

= (mLB,mA,mC) (5.17)

MT,T =
∑

mx,x∈CT

mx (5.18)

The tuple (5.17) is turned to a scalar by summing its individual components (5.18).
The sum MT,T is the total number of machines needed for target T . For instance, if
the load-balancer uses three machines, the application six machines and the cache
a single machine, the tuple looks like this:

MT,T,MQT = (3, 6, 1) (5.19)

MT,T = 10 (5.20)

The number of total machines for the target T then is the sum of all component
machines, in this example 10. For the proposed scheme SP , the target T is split up
by the processing subsystem SP and the read subsystem SR:

tx =


T, if x ∈ CSR,SP (5.21a)

RPR · T, if x ∈ CSR (5.21b)

(1−RPR) · T, if x ∈ CSP (5.21c)

66

of machines

Requests/sec

Figure 5.5: A comparison of the total machines for target model MT , the linear total
machines regression MR and measured data for the proposed scheme SP and traditional
scheme ST .

The machine-quantity tuple MQT is generated from all components:

MT,S,MQT = (mx | x ∈ CP) (5.22)

= (mLB,mD,mRS,mQ,mW ,mES) (5.23)

MT,S =
∑

mx,x∈CP

mx (5.24)

As for the traditional scheme ST , the tuple (5.23) is turned to a scalar by summing
its individual components (5.24).

5.5.3.5 Linear Regression for Machines for Target Flow

The linear regression for the number of machines provides a simpler approximation
of the performance (Figure 5.5). The machine reduction in Figure 5.5 stems from a
finer-grained allocation of machines, where in the traditional scheme the full applic-
ation has to be scaled, where in the proposed scheme both the read and processing
subsystem can be scaled individually. For the traditional scheme ST , the app delay
dp,A is as shown in (5.11). The slope can be calculated as a unit of increasing total
machines per flow-quantity:

MR,T,s =
∑

x∈CTSR,SP

1

fx
+

∑
x∈CTSR

RPR

fx
(5.25)

The full regression equation multiplies the slope with the target T and adds the
minimal number of component machines |CT |:

MR,N = T ·MR,N,s + |CT | (5.26)

67

For the proposed scheme SP , the slope needs to consider both the read subsystem
SR and the processing subsystem SP :

MR,P,s =
∑

x∈CPSR,SP

1

fx
+

∑
x∈CPSR

1

RPR · fx
+

∑
x∈CPSP

1−RPR
fx

(5.27)

MR,P = T ·MR,P,s + |CP | (5.28)

5.5.4 Performance Comparison

To be able to compare the performance of the traditional scheme ST and the pro-
posed scheme SP , comparison metrics are developed.

5.5.4.1 Relative Average Machine Reduction

When the proposed scheme SP needs fewer machines for the same load than the
traditional scheme ST , the delta can be expressed as a factor of machine reduction.
The relative average machine reduction is calculated with the slopes of the linear
total machines regressions of both schemes (Figure 5.5).

RAMR = 1− MR,P,s

MR,T,s

(5.29)

If the proposed scheme SP needs five machines and the traditional scheme ST needs
six machines for the same load, the RAMR equals (1 − (5/6)) = 0.17. This shows,
that the proposed scheme SP needs 17% fewer machines than the traditional scheme
ST . If both schemes use the same number of machines, the RAMR is zero.

5.5.4.2 Break-Even Point for Dependency Processing

In the traditional scheme ST , the app A is responsible for the cache updates and
invalidation. Therefore, the cost of updates is added to the app delay dp,A. In the
proposed scheme SP , the dependency processing delay ddp,W is explicitly defined as
the time it takes to process the dependencies of a request. When comparing both
schemes, an interesting metric is the time the proposed scheme SP has available
for the dependency processing ddp,W . The dependency processing delay ddp,W where
both schemes deliver the same performance is the break-even point ddp,W,BEP . It
can be calculated by equalising the linear regressions of the traditional scheme ST

and proposed scheme SP and solving the equation for the dependency processing
delay ddp,W :

CPSP
= CPSP

\ {W} (5.30)

ddp,W,BEP = (MR,T = MR,S), solve for ddp,W

= cw ·mW · (MR,T −MR,P)− (1−RPR) · (dT,W + dP,W + dp,W) (5.31)

68

fopt,x

copt,xclow,x chigh,x

q fopt,x

10 20 30 40 50

20

40

60

80

100

120

frange,x

fmean,x

Concurrency

Requests/sec

Figure 5.6: Optimal Concurrency Range ocw0.9,x = [2, 22] with a performance-
concurrency-width triplet pcw0.9,x = (89, 8, 20) for the average normalised request flow
fx of 20 machines.

For the break-even calculation, the worker component W is excluded from the pro-
cessing components CPSP

as shown in (5.30). The worker component delays without
the dependency processing delay are specifically considered in the last term of (5.31).

5.5.5 Performance Optimisation

In Section 2.8 it was identified that the hardware and implementation of a component
is critical to the performance. This opens up research question R5.5: Which metric
enables to operate an application with optimal load? Consequently, this section
considers optimal load and implementation specific metrics.

5.5.5.1 Optimal Concurrency Range

In Section 2.8 and further machine-normalised measurements for 1 to 22 machines
as frange,x (Figure 5.6) it is observed that the request flow of a component has an
optimal range. In Figure 5.6, fmean,x shows that with increasing concurrency cx, a
component has a performance optimum copt,x where it delivers the maximal request
flow fopt,x. An algorithm that controls the flow of requests to a component aims to
load the component with the optimal concurrency copt,x. A key metric for a compon-
ent, however, is the sensitivity around the optimal concurrency. If the performance
degradation is low around the optimum, algorithms can operate with higher tol-
erance. This allows the systems to be more insensitive to dynamic concurrency
values, which leads to fewer scaling actions. To describe this broadness of possible
concurrency values with respect to a percentage request flow loss q, the optimal con-
currency range ocrq,x is introduced. An ocr0.95,x = [5, 20] means that a component
is able to handle concurrencies between 5 and 20 while operating at 95% of the per-
formance optimum fopt,x. The optimal concurrency range ocrq,x can be calculated

69

from a series of performance data(cx) that is measured with increasing concurrency
values cx. The following is representative pseudocode for finding the lowest- and
highest concurrency values:

1: fopt,x ← max(data)

2: clow,x ← chigh,x ← copt,x ← max−1(fopt,x)

3: while data(clow,x) ≥ q · fopt,x do
4: clow,x ← clow,x − 1

5: end while
6: while data(chigh,x) ≥ q · fopt,x do
7: chigh,x ← chigh,x + 1

8: end while
9: return [clow,x, chigh,x]

The optimal concurrency width ocwq,x of an optimal concurrency range ocrq,x ex-
presses the general sensitivity of the component to concurrency:

ocwq,x := max(ocrq,x)−min(ocrq,x) (5.32)

5.5.5.2 Performance-Concurrency-Width Triplet

In order to optimise the performance, the Performance-Concurrency-Width triplet
pcwq,x is proposed as a metric that allows comparing different implementations of
components with each other.

pcwq,x = (fopt,x, copt,x, ocwq,x) (5.33)

The pcwq,x-triplet includes the most important performance parameters for a com-
ponent. It allows building a performance delta triplet ∆pcwq,x = pcwq,Z − pcwq,Y

that shows the performance differences between implementations Y and Z. A delta
triplet ∆pcwq,x = (12, 0, 8) presents Z as a superior implementation to Y . With the
same concurrency, implementation Z’s request flow f is 12 requests bigger. At the
same time it is 8 concurrency values more insensitive to load.

5.6 Empirical Performance Evaluation
After the modelling of the performance in the previous section, this section empiric-
ally evaluates both schemes with multiple machines on the component and compos-
ition level. For the evaluation, the evaluation cluster Pi-One that was introduced
in Section 2.8 is used. Performance testing of systems with real-world application
data further strengthens modelled assumptions and improves trust in the model.
This opens up research question R5.6: How is the real-world application perform-
ance of the proposed scheme compared to a traditional approach? Consequently, this
section additionally compares the performance of three real-world applications for

70

Table 5.3: Isolated evaluation data for the delay factors of the component models.

Delay Parameter Value R2 RMSE Fit

Network
dn,x 8.32× 10−4

0.975 1.7× 10−2 0.973
dg,x 3.96× 10−4

Size ds,x 1.26× 10−4 0.998 1.3× 10−3 0.975
Process dp,x 2.07× 10−10 — — —

both schemes.

5.6.1 Component Models Evaluation

To evaluate the component models, a single component with multiple machines
is tested. The central equation, the maximum request flow fx of a component is
composed of the number of machines mx, the network delay dn,x, the request size
delay ds,x and the process delay dp,x. Since the evaluation of the whole equation
is complicated, the delay factors are isolated and evaluated individually. For each
delay factor, a customised test bed is set up that sends requests to the component.
Each test bed eliminates the influence of other delays, such as different sizes and
processing delays by setting them to zero. Further, each test bed varies the number
of machines and applied concurrency to compare the predicted delays from the
models with the measured delays. For the network delay evaluation the goal is to
measure the network delay dn,x and determine the network delay gain dg,x by fitting
it to the results of the evaluation. For the size delay ds,x evaluation the goal is
to measure the influence a single kilobyte has on the delay by finding a slope that
matches all measured values best. The processing delay dp,x can be measured and
depends on the type of processing that occurs inside the component. The results
from the evaluations including determined values valid for the Pi-One evaluation
platform are given in Table 5.3.

5.6.1.1 Metrics

To quantify the results of the evaluation and compare the model to the data, the
Coefficient of Determination (R2), Root-Mean-Square Error (RMSE), Normalised
RMSE (NRMSE) and model fit are calculated. The RMSE shows the absolute error
without relating it to the range of observed values. The normalised version of the
RMSE relates to the observed values so that NRMSE = RMSE/(ymax − ymin)

where ymax and ymin represent the maximum and minimum of all observed values y.
This allows expressing the model fit Fit = 1−NRMSE as a percentage where 1.0

is a perfect fit and 0.0 is no fit.

5.6.1.2 Network Delay

In the first step, the network delay dn,x is isolated by setting ds,x = dp,x = 0.
For the model, the known parameters are the number of machines mx and the

71

concurrency cx. The tests are run for all possible (mx, cx) combinations where the
number of machines mx is in the range of (1 . . . 20), and the number of concurrent
requests cx is in the range of (1 . . . 50). The network delay dn,x can be retrieved
from the results as the smallest measured delay. The network delay gain dg,x can
either be formulated as a quadratic- or linear optimisation problem on the network
delay dn,x. It is solved using the NonlinearModelFit function from Mathematica
(1988) which automatically picks a best fitting linear or quadratic delay using one
of the ConjugateGradient, Gradient, LevenbergMarquardt, Newton, NMinimize or
QuasiNewton regression methods. The results support the network delay model
dn,x as it fits the data by 97.3%.

5.6.1.3 Request Size Delay

The size delay ds,x is isolated by setting the processing delay dp,x = 0 and the
concurrency and number of machines cx = mx = 1. According to the Internet
Archive (1996), the average individual response size depends on the content type
but is smaller than 108 kB. Tested sizes s range from 0 to 400 to cover the average
response sizes listed in Internet Archive (1996) well. The determination of the
size delay ds,x can be formulated as a linear optimization problem with ds,x and is
computed using Mathematica (1988). The results in Table 5.3 support the size delay
model ds,x as it fits the data by 97.5%.

5.6.1.4 Processing Delay

The processing delay dp,x can simply be measured where our results are listed in
Table 5.3. For example a component that guarantees a constant lookup time O(1)

is expected to have a constant processing delay dp,x.

5.6.2 Composition Models Evaluation

As a next step, the composition evaluation is used to analyse the interplay of com-
ponents. For the evaluation, a chained and distributed composition of components
is conceived. The proposed scheme model makes the following assumptions that can
be formulated as hypotheses:

• H5.1: The maximum request flow is determined by the slowest component in
the chain (chained composition).

• H5.2: The maximum request flow is relative to the distribution of the traffic
to the components (distributed composition).

5.6.2.1 Chained Composition

In a chained composition multiple components are stringed through a single connec-
tion. The evaluation is run with (2 . . . 10) machines stringed together. One random
machine in the chain introduces a processing delay of dp,x = 0.05. Measured at the

72

end of the chain, the expected maximum delay is:

F = (dn,x + dp,x)−1 = 19 (5.34)

The measurements of all chains show a request flow F of 19 which supports H5.1
with empirical data.

5.6.2.2 Distributed Composition

In the distributed composition one component distributes the requests to many
others. One component X dispatches the traffic to two other components (Y, Z)

with 10 different ratios rdisp ∈ (0.0, 0.1, . . . , 1.0). X introduces a processing delay
of dp,X = 0.01 and Y a processing delay of dp,Y = 0.1. The expected maximum for
each ratio is:

F = ((rdisp · dp,X) + ((1− rdisp) · dp,Y))−1 (5.35)

All test cases combined have a total RMSE = 4.11 and a total prediction fit of
Fit = 0.942. This allows to support H5.2 as the data supports the model with
confidence of 94.2%.

5.6.3 Real-World Application Evaluation

After the evaluation of components and their composition, the whole model is eval-
uated. Therefore it is interesting to see how the model behaves when traffic with the
parameters of three real-world application traces is applied. For each application,
both the traditional scheme ST and the proposed scheme SP are implemented. The
collected data series of each application in both schemes is evaluated in two dimen-
sions: The prediction fits of the proposed model and the machine reductions. The
data series measure the achieved request flow F for the total number of machines
MT,N . The measurements are starting with the minimum number of machines as
determined by the components for the traditional scheme |CT | and the proposed
schemed |CP |. Further machines are added up to a maximum of 20, as half of the
42 machines are needed for load generation. As a scaling decision, the new machine
of the next run is always added to the slowest component that introduces the bot-
tleneck. The evaluation considers three application traces that are presented in the
subsequent sections.

5.6.3.1 Trip Planner

The trip planner Ttrip is a web service that allows users to plan a journey all over the
world. It calculates the itinerary between two or more destinations and enhances
it with local information, e.g. restaurants and hotels. The service has no social
features that allow the sharing of trips or recommendations. The traffic resembles

73

Table 5.4: Trace parameters extracted from real-world applications.

Application n RPR dp,x s

trip 10 million 0.849 1.41 s 2 kB
social 0.6 million 0.571 0.48 s 161 kB
soccer 14 million 0.998 1.0 s 5 kB

an application of an intermediate update nature as trip indices can be calculated
offline, but user input has to be handled. The |Ttrip| trace contains 10 million traces
that are available from webscalingframeworks.org/traces (2016).

5.6.3.2 Social Network

The social network Tsocial is a platform we implemented and set up on campus as
traffic traces of social-networks were unavailable. The platform provides a subset
of the features of a typical social-network platform and is built to be as similar to
Facebook as possible. In addition to the management of people and their friend-
ships, it shows a news feed with status messages from friends and allows exchanging
private messages between friends. Missing features are photo- and video-sharing
and the creation and management of groups. The platform is hosted on a university
server and only accessible from the university test network. Over a time period
of two months we recorded user requests and replayed them ten times against the
platform. The traffic resembles traffic of a social nature as resources are constantly
changed by users. The |Tsocial| trace contains 0.6 million traces that are available
from webscalingframeworks.org/traces (2016).

5.6.3.3 FIFA Soccer Worldcup 98 Website

Traces of the 1998 soccer World Cup website Tsoccer between April 30, 1998 and
July 26, 1998. The website resembles an application of a more static nature as no
social features and few processing requests are issued. The |Tsoccer| trace contains
14 million traces that are available online from Hewlett-Packard (1999).

5.6.3.4 Extracted Application Metrics

Table 5.4 lists the traffic trace parameters extracted from the evaluated Ttrip, Tsocial
and Tsoccer applications. The n parameter shows the total number of analysed traces.
For the read/processing ratio RPR, the number of safe versus unsafe HTTP methods
is counted. The mean processing delay dp,x is extracted by calculating the time
difference between request and response. The request size for each trace is given
where the evaluation uses the mean of all sizes. As the Tsoccer trace does not contain
processing delays dp,x, it is manually set to a rounded average processing delay
dp,x = 1 derived from the TPtrip and TPsocial traces.

74

Table 5.5: Results of real-world application evaluation for both schemes.

Prediction Fit Machine Reduction DP BEP
App RMSET RMSEP FitT FitP OMR PMR RAMR ddp,x
trip 0.707 0.858 0.962 0.954 0.630 0.604 0.627 2.69
social 0.806 0.858 0.957 0.954 0.325 0.355 0.466 1.19
soccer 1.048 2.790 0.944 0.853 0.924 0.943 0.903 26.04

Perfsoccer

Perfsocial

Perftrip

Fitsoccer

Fitsocial

Fittrip

0 20 40 60 80 100
%

Figure 5.7: Predictions fits, observed and predicted machine reductions and relative
average machine reduction for both schemes and all evaluated real-world applications.

5.6.3.5 Results

Fig. 5.7 and Table 5.5 illustrate the results of the real-world application evaluation.
The average prediction fit of 93.7% for all three applications further supports the
proposed scheme models. Table 5.4 shows the observed- and predicted machine
reductions OMR and PMR with the relative average machine reduction RAMR

as modelled in Equation (5.29). The machine reduction compares the composite
number of machines needed by both schemes with equal target request flows T .
All applications in Table 5.5 need fewer machines (63%, 32%, 92%) if they use the
proposed scheme. The proposed scheme SP explicitly needs time to process de-
pendencies while the traditional scheme ST spends the time to manage its cache
implicitly in the measured application delay dp,A. The break-even point for depend-
ency processing ddp,W,BEP calculates the delay where both schemes exhibit equal
performance. The column DP BEP in Table 5.5 shows that the proposed scheme
SP has 2.69, 1.19 and 26.04 seconds to process all dependencies before the perform-
ance of both schemes is equal.

5.7 Discussion
In this chapter, a novel design pattern for resource storage and management and
an optimised request flow scheme between components has been presented. With
respect to R5.1: Which design pattern can be used for optimised resource man-
agement?, the novel Permanent Resource Storage and Management pattern divides
resource models into individually scalable, manageable and decoupled read and pro-

75

cessing subsystem that guarantee constant response times for all read requests,
releases applications from avoidable load and ensures that changes are processed
exactly once for the whole system. With respect to R5.2: How can components
be composed and requests be flowed efficiently?, an implementation of the PRSM
pattern was presented that provides an efficient and scalable composition of com-
ponents. Additionally, a mechanism to synchronously and asynchronously process
dependencies in order to enforce eventual or strong consistency of resources was
proposed. With respect to R5.3: Which interface extension is required to enable
the optimised scheme?, a resource interface was presented as extension to the worker
interface. The resource interface provides actions to manage the storage and meta
information such as dependencies of resources. With respect to R5.4: How can the
performance be modelled analytically?, component and composition parameters and
models were developed that allow the analytical evaluation of request flow and total
machines performance. Additionally, models to compare the performance between
a traditional scheme and the proposed scheme were presented. With respect to
R5.5: Which metric enables to operate an application with optimal load?, metrics
and models were developed that are able to measure and optimise the performance
of components by operating them in the optimal concurrency range. With respect
to R5.6: How is the real-world application performance of the proposed scheme
compared to a traditional approach?, results showed that all evaluated real-world
applications need fewer machines (63%,32%,92%) with the proposed scheme than
the traditional composition and flow scheme. Additionally, the results showed that
the average time available to process dependencies was positive for all applications
with 2.69, 1.19 and 26.04 seconds. The component, composition and mean predic-
tion fit for all applications further support the proposed models.

5.8 Summary
In conclusion, it was shown that shifting the complex and time intensive processing
of resource to the background allows creating a decoupled foreground layer with con-
stant processing times. The application of the presented PRSM pattern furthermore
can enhance the total performance of a system in terms of request throughput per
second and total machines needed. By having a worker pull requests from a pool of
processable requests, applications can be operated within their optimal concurrency
range. The traditional push mechanism has no knowledge of the application’s pro-
cessing capabilities in terms of current and optimal number of requests per second.
As modern web applications often keep state at the client, an eventual consistency
of resources is an acceptable option. The state changes initiated by the user can
optimistically and immediately be shown to the user while the actual processing is
performed in the background. As presented in Section 5.3, the management model
processes resource changes in the background. However, this chapter did not con-

76

sider detailed resource update mechanisms but calculated the time available for
the updates. Consequently in the following Chapter 6, algorithms to optimise the
resource dependency processing are elaborated in detail.

77

6. Resource Dependency Processing

6.1 Overview
In this chapter, the dependency structure and key graph measurements of web re-
sources are examined. A longest-path algorithm using topological sort with dynamic
programming is presented for efficient processing. Further, dependencies are ana-
lysed to find correlations between processing performance and graph measures. Two
algorithms that base their parameters on six real-world web service structures, such
as the Facebook Graph API are developed to generate dependency graphs. Further,
a model is developed to estimate processing performance based on resource para-
meters. Finally, four series of graphs with increasing graph measures are analysed
for the effects of the graph structure on the performance. The literature review in
Chapter 3 identified six open research questions related to the analysis and optim-
isation of resource dependency processing:

• R6.1: How can resource dependencies be measured and stored?

• R6.2: What algorithm can be used to optimise the performance of processing?

• R6.3: What effects have dependency graph measures on the performance?

• R6.4: How can resource dependencies be generated?

• R6.5: How well can the dependency processing duration be modelled?

• R6.6: How is the performance compared with a typical traditional processing
approach?

The remainder of the chapter is organised as follows: Section 6.3 identifies the
structure and measures of resources and dependencies. Section 6.4 evaluates suit-
able graph processing algorithms, whilst Section 6.5 finds correlations between the
processing duration and other graph measures. Section 6.6 introduces dependency
graph and traffic generation algorithms and Section 6.7 develops the models for the
approximation model where Section 6.8 evaluates both the performance and model
fits with the evaluation cluster. Section 6.9 outlines the results and provides an-
swers to the aforementioned research questions. Finally, Section 6.10 concludes the
chapter with a perspective on the subsequent chapters.

6.2 Motivations and Objectives
The optimised request flow implementation based on the PRSM pattern presented in
the previous Chapter 5 helps to distribute requests to multiple servers. The optimal

78

number of necessary servers has to be adapted to the encountered load continuously
by scaling up and down. The scaling actions can occur based on the model presen-
ted in Chapter 5. Simultaneously to scaling, the high throughput of requests needs
to be ensured with minimal processing delays in order to minimise waiting times
for the users. Thus, finding an efficient RDB update mechanism is a key require-
ment to build a scalable web service architecture with optimised request routing.
In Chapter 5, it was identified that the read/processing ratio has a major influence
on the performance of the request flow. This stems from the increased processing
overhead the proposed PRSM pattern exhibits over a traditional approach. By
definition, the PRSM pattern trades a more complex processing for increased read
performance. Hence, with a slow update performance, only read-driven applications
can benefit from the RDB which limits the field of applications. In Chapter 5, a
model to calculate the optimal number of machines with the highest request flow was
presented. The model represents the time it takes to update changes with the de-
pendency processing delay as parameter. For the scenarios evaluated in Chapter 5,
the calculated dependency processing delay highlighted how much time there is
available for dependency processing before the traditional scheme exposes the same
performance as the proposed scheme. In this chapter, the constant dependency
processing delay parameter is extended with an exact RDB update model. The
model enables predicting the exact performance and allows evaluating the effect-
iveness of an optimised request flow approach for a distinct application. Further,
it helps to optimise an existing application structure for fast processing. The re-
mainder of this chapter puts a focus on optimising the structure and processing
of web resource dependencies. Firstly, a graph is identified as the structure for
expressing resources and its dependencies in addition to significant properties and
measures. Different graph processing algorithms are evaluated in a shortest-path
and longest-path problem domain, where a topological sort with dynamic program-
ming is used to efficiently compute a valid dependency processing order alongside
a model to calculate the processing duration. A linear correlation of the processing
duration with the dependency depth and the cluster size is found and evaluated
with a model and empirical data collected from the evaluation cluster presented in
Section 2.8. Secondly, a simplified approximation model is developed allowing for
precise and cost-efficient computation of the processing duration, the duration delta
and relative performance improvement compared to traditional methods. The con-
stant dependency processing delay from Chapter 5 becomes variable and enables a
full calculation of the expected performance. Finally, a comprehensive performance
comparison between a dependency processing approach and a traditional approach
is conducted. The test applications are created from a service based graph algorithm
that is developed using the APIs of six real-world applications and a fuzzy graph
algorithm randomly creating applications based on certain measures.

79

Figure 6.1: Resource graph with logical dependencies and resource dependency graph
with synchronous and asynchronous dependencies

6.3 Resource Dependency Measurements
In order to minimise the expensive processing of requests, the declaration of resource
dependencies that have to be processed for each request modifying data on the server
is presupposed. Resulting from the processing, resources are stored in a distributed,
cloud based resource database RDB. This opens up research question R6.1: How
can resource dependencies be measured and stored?

6.3.1 Resource Vertices

A web service exposes multiple routes delivering different resources such as markup,
structured data, images or videos to the consumer. The resource graph on the left
side of Figure 6.1 illustrates the logical structure of a RESTful API with any base
URL before / as root. The sub-resources A. . .L are accessible via their unique URI ,
where (A,B, J,K, L) are direct descendants of the base URL offered as /A. . . L. Sub-
resources nested deeper in the hierarchy, such as H, are offered by traversing through
the graph: /A/D/H. The resource graph on the left side of Figure 6.1 represents the
logical structure of a service and does not define dependencies between the resources.
On the right side of Figure 6.1 explicit dependencies between resources are defined,
where dependencies declare that a resource contains content of another resource.
Table 6.1 presents a detailed list of different graph types used in this work.

6.3.1.1 Processing & Read Vertices

The standard HTTP methods (e.g., GET, PUT, POST, or DELETE) are used to act
on a resource. Each resource vertex is uniquely identified by a (HTTP method, URI)
tuple, so (GET, /A) is distinct from (POST, /A). As Figure 6.1 shows, each resource
vertex is assigned to be either a processing vertex at Figure 6.1 (b) or a read vertex
at Figure 6.1 (a). Read vertices are vertices allowing only GET or HEAD methods
in the tuple and processing vertices are vertices with all other HTTP methods. This
distinction can be used to apply optimised request routing mechanisms, where read
vertices and processing vertices can be handled by separate, individually scalable
subsystems.

80

Table 6.1: Conceptual distinction of dependency related graph types.

Resource Graph All resources of a web service. Nesting of re-
sources determines edges.

Dependency Graph Dependencies between resources only. No re-
sources that have no dependencies.

Structure Graph Logical resource structure with unexpanded en-
tities. Can be expanded to a resource graph.

Processing Tree Tree that considers processing precedence con-
straints for a single resource as root.

6.3.2 Dependency Edges

To be able to keep the resource database up to date automatically, each resource of
a web service needs to declare which other resources it influences. As an example,
the creation of a blog post has a dependency on the sitemap where the blog post
is listed. Additionally, the blog post is listed in the resource for all posts and it
might also be listed on the index site of the blog as well. As shown on the right side
of Figure 6.1, each dependency forms a directed connection between two resources.
Hence resource dependencies are modelled as a directed graph. Table 6.1 presents
the conceptual distinction of dependency related graph types, where the required
dependency declaration extracts a dependency graph from a resource graph.

6.3.3 Graph Measures

In addition to well-known graph measures such as vertex count, edge count, vertex
degree and clustering coefficient, dependency graphs exhibit special measures helping
to classify and evaluate the dependency structure of web services.

6.3.3.1 Dependency Depth

The Dependency Depth ddep(v) is the length of the longest-path of all dependencies
connected to a vertex. In Figure 6.1 (c), the longest-path for B is (B,A,C,D, F,G),
so the length is ddep(B) = 5. For L, ddep(L) = 1 and for J , ddep(J) = 0. The depth
is important as it denotes the maximum number of steps required for dependency
processing and is detailed in Section 6.4. The mean dependency depth of all vertices
is used in the approximation model in Section 6.7 to calculate the average processing
steps needed. In general, web services should try to minimise the dependency depth
as it has a direct influence on the performance.

6.3.3.2 Dependency Degree

The Dependency Degree ddeg(v) is the number of outgoing dependency edges for
each vertex. In Figure 6.1 (d), vertex D has the highest dependency degree with
ddeg(D) = 2. The mean dependency degree of all vertices can be used to estimate
the portion of parallel processing, as all children of a vertex can be computed in
parallel without collisions.

81

6.3.3.3 Read-Processing Vertex Ratio

The Read-Processing Vertex Ratio RPV R denotes the proportion of read-only ver-
tices to processing vertices in the resource graph. In Figure 6.1 (a), 3 of 12 vertices
are read vertices so the RPV R = 3/12. The ratio is mainly interesting for the
modelling of dependency graphs in Section 6.6 as read vertices do not have any pro-
cessing dependencies that need to be processed. A high RPV R generally indicates
fewer dependency processing steps.

6.3.3.4 Cluster Count

Figure 6.1 (e) illustrates CC = 2 clusters in the dependency graph where one cluster
is formed by the connection of (B,A,C,D, F,G) and the other is formed by the
connection of (J, L,H). Clusters generally give an indication on the structure of a
web service where a low number of clusters indicates a deeply joint application.

6.3.3.5 Cluster Size

The cluster size measures the mean number of connected vertices in a graph which
helps finding the longest-paths in each cluster. In Figure 6.1 (e) the cluster size is
calculated by counting the vertices in each cluster and dividing them by the number
of clusters: CS = (6 + 3)/2 = 4.5.

6.3.3.6 Sparsity

A dense graph is a graph in which the number of edges is close to the maximal
number of edges. From the data presented in Section 6.6, however, it follows that
dependency graphs are sparse graphs. In order to express the sparsity of a graph,
the sparsity S is defined to equal the number of edges divided by the number of
vertices. In Figure 6.1 (a) the sparsity S = 10/9, where a sparsity of one denotes
an equal presence of edges and vertices.

6.4 Processing Algorithms
For an efficient processing of dependencies the problem is formulated as follows:
Given a vertex v from a dependency graph DG, how long does it take to process all
dependencies of v while ensuring correct processing order. The key metric to optim-
ise is the dependency processing duration dP (v) which opens up research question
R6.2: What algorithm can be used to optimise the performance of processing? As
Figure 6.2 (a) shows, a dependency graph defines multiple contingent processing
paths. The resource vertex E can be reached via the path (A,B,E) and (A,C,E).
The dependency graph states both B and C need to be finished processing before
E can be processed as it contains changes from both B and C. Hence, an algorithm
is needed to calculate the fastest and sequentially correct processing path. The
proposed approach to calculate the processing path and thereby the duration is to

82

Figure 6.2: Dependency processing scheduling problem using a processing tree with a
shortest-path and a longest-path approach.

weight the edges of the dependency graph with the mean processing delay introduced
by the vertex the edge points to. This puts the algorithm into the domain of paral-
lel precedence-constrained job scheduling algorithms (Sedgewick, 2014; Ray, 2013;
Cormen, 2009) which generally determine a possible order of constrained events.

6.4.1 Evaluation

To find and evaluate suitable algorithms, 1000 random dependency graphs are gen-
erated with a custom created Incremental Edge Add (IEA) graph generation al-
gorithm. The IEA generation algorithm starts with 1000 completely disconnected
resource vertices in the first generation graph. In each next generation, it adds a
random, directed edge to the previous generation graph while ensuring no cycles
are created. The 1000 generations of the graph are build with a maximum number
of 1000 edges. Each resource vertex introduces a processing delay of 100ms. In
order to validate the algorithms presented in the subsequent sections with the 1000
dependency graphs, the following hypothesis is formulated:

• H6.1: With an increasing number of edges, the total processing duration
increases monotonically.

The hypothesis is evaluated with a model of the applied algorithm and an empir-
ical data collection on the Pi-One evaluation cluster presented in Section 2.8. The
dependency processing algorithms are implemented using the Go programming lan-
guage and evaluated with one million HTTP requests to measure the dependency
processing duration.

6.4.2 Shortest-Path Approach

Firstly, algorithms to find the shortest processing paths in a graph are examined.
Figure 6.2 (d) illustrates how a shortest-path algorithm extracts a shortest-paths
tree (SPT) (Sedgewick, 2014) for the resource vertex A from the dependency graph

83

of Edges

Time (sec)

Figure 6.3: Shortest-Paths tree evaluation of 1000 dependency graphs with an increas-
ing number of edges.

in Figure 6.2 (a). The edges (C,E) in Figure 6.2 (d) and (H,F) in Figure 6.2 (e)
are removed as it takes longer to compute E after B and F after H. Figure 6.2
(b) shows how the total processing time is reduced by an optimal ordering of the
processing blocks where the total dependency processing duration for A is 6. To
find the shortest-paths processing tree (SPT) for all resource vertices Dijkstra’s
Algorithm is implemented to calculate the maximum processing duration from the
critical path, which is the longest-path in the tree.

6.4.2.1 Results

Figure 6.3 illustrates the results from the shortest-paths evaluation. The processing
duration starting at Figure 6.3 (a) increases with the number of edges. However, with
the presence of more edges a shortest-path algorithm is able to reduce the processing
duration as new shortcuts are added to dependencies previously connected through
a longer path. This leads to a maximum at Figure 6.3 (b) which is further reduced
as the number of edges increases at Figure 6.3 (c). The hypothesis H6.1 needs to be
rejected for a shortest-path approach. Consequently, the shortest-path approach is
not feasible for dependency processing. It violates the constraint to strictly respect
the order of processing by always selecting the fastest path available. Figure 6.2
shows this in (d), where E is processed after 1 time unit but B takes 3 time units to
finish. Changes from B are not reflected in E, which violates the dependency edge
(B,E).

6.4.3 Longest-Path Approach

From the collected data and work in Sedgewick (2014), Ray (2013) and Cormen
(2009) it is concluded that a longest-paths processing tree (LPT) guarantees the
precedence constraints for dependency processing. Generally, longest-path finding
for a directed graph is an NP-hard problem which can not be solved efficiently for
large datasets. However, if the problem is constrained to directed acyclic graphs,
efficient algorithms exist. For dependency graphs this means, that in the design
phase of a web service an automatic analysis tool continuously checks for cycles

84

in the dependency declaration and reports an error when a cycle is encountered.
Figure 6.2 (f) illustrates how a longest-path processing tree for resource vertex A
is extracted by deleting the edges (C,E) and (E,F). The scheduling solution in
Figure 6.2 (c) shows that with 9 time units, the longest-path solution takes longer
than the shortest-path solution with 6 time units. In contrary to the shortest-
path solution however, the longest-path solution guarantees that all dependency
constraints are satisfied. The total processing duration is determined by the critical
path A,B,D,G,H, F, J in Figure 6.2 (h) which equals to the longest-path in the
longest-path processing tree.

6.4.4 A Forest of Processing Trees

Figure 6.2 (g) additionally shows that processing trees are distinct for each resource
vertex. The longest-path tree in Figure 6.2 provides the solution for resource vertex
A. Resource vertex C can not use the solution for A as it has no dependencies in the
processing tree for A. The correct processing path for C is C,E, F, J . In conclusion,
each resource vertex stores its individual processing tree thus leading to a forest of
processing trees.

6.4.4.1 Time Complexity

In order to calculate the time complexity of the algorithms, the maximum number
of edges Emax in a directed acyclic graph DAG with V vertices is examined. Using
an adjacency matrix, a dependency graph with maximum edges can be constructed
by filling either the upper or the lower triangular part of the matrix excluding the
diagonal with edges where a 1 marks the presence of an edge between two vertices:

Emax(V) =
1

2
· (−1 + V) · V (6.1)

Using each vertex as a root for a subgraph of a DAG, the maximum number of
vertices Vsub,max in each subgraph must decrease by at least one to ensure no cycles
are present:

Vsub,max(V) =
V∑

r=0

V − r =
V∑

r=1

r (6.2)

6.4.5 Forest of Processing Trees Extraction Algorithms

Two algorithms to determine the longest-path trees efficiently are analysed: A ver-
sion of Bellman-Ford that uses negated edge weights and a novel algorithm that is
based on a topological sort and uses dynamic programming.

85

6.4.5.1 Negated Bellman-Ford

As Dijkstra’s algorithm, the Bellman-Ford algorithm calculates the shortest-path
in a graph. In contrast to Dijkstra’s algorithm however, it can deal with negative
edge weights. Sedgewick (2014) proves the longest-path problem in edge-weighted
directed acyclic graphs to be solvable by finding the shortest-paths in a graph where
all edge weights are negated. For dependency graphs, this allows to calculate a
processing tree with the following steps:

1. Calculate the shortest-paths processing tree for a vertex v with Bellman-Ford
SPT = BF (−DG, v), where −DG is the dependency graph with negated edge
weights.

2. Convert the solution to a longest-path tree by negating it where LPT =

−SPT .

3. Find the critical path in LPT . The sum of the edges equals the dependency
processing duration for v.

The Bellman-Ford algorithm takes time proportional to E ·V . The algorithm needs
to be executed for every resource subgraph of the dependency graph, so from (6.1)
and (6.2) follows that:

V∑
v=1

Emax(v) · v (6.3)

Albeit suitable, the Bellman-Ford algorithm is not used in this thesis as a faster and
more efficient algorithm introduced in the following section exists.

6.4.5.2 Topological Sort with Dynamic Programming

By topologically sorting a DAG, a linear ordering of vertices is generated guarantee-
ing a vertex v1 to come before a vertex v2 if an edge v1 → v2 exists. If dependencies
are processed by the calculated order, it is guaranteed all changes are reflected in
all dependent resource vertices. The approach can be optimised further by finding
branches of jobs eligible for parallel processing as their outputs do not depend on
other resources. Sedgewick (2014) proposes an algorithm to find a longest-path tree
from a root vertex in linear time. The proposed algorithm however only calculates
a single longest-path tree, where for dependency processing the longest-path trees
for all resource vertices as root nodes are needed. In addition, the length of the
critical path for each vertex is needed to model the processing duration. Therefore,
the algorithm is extended with a dynamic programming approach so the computed
result returns all processing trees as forest, as well as the durations of all critical
paths:

1: delays← processing delays of vertices of DG
2: order ← topologically sorted vertices of DG

86

3: forest← subgraphs for all v out components
4: durations← 0 for all vertices of DG
5: for all vertices v in DG do
6: suborder ← intersection of v in forest and order
7: distances← −∞ to each vertex t in forest
8: distances[v] = delays[v]

9: for all vertices s in suborder do
10: for all children c of s do
11: d = distances[s] + delays[c]

12: if distances[c] < d then
13: distances[c] = d

14: if durations[v] < d then
15: durations[v] = d

16: end if
17: end if
18: end for
19: parents← parents of vertex forest[v][s]

20: if length of parents > 1 then
21: max← maximum distances of parents
22: for all vertices p in parents do
23: if distances[p] < max then
24: delete edge p→ s from forest[v][s]

25: end if
26: end for
27: end if
28: end for
29: end for
30: return [forest, durations]

The proposed Forest of Processing Tree Extraction (FPTE) algorithm applies dy-
namic programming by calculating the topological order only once for the entire
set of vertices. A subproblem is defined as finding a single-source longest-path tree
based on the total order. The original algorithm from Sedgewick (2014) calculates
only a single longest-path tree for a selected vertex. In detail, the FPTE algorithm
initialises its data structures (lines 1-4), calculates the topological order of all ver-
tices and creates arrays for the distances and durations for each root vertex v. For
each vertex, subgraphs are generated (line 3) from where the algorithm step-by-step
removes the shortest-path edges. Using each vertex once as root vertex (line 6), the
vertices of the subgraph are extracted in suborder. The distance to each vertex in
the subgraph is set to −∞ on line 7, where the distance of a node to itself is the
processing delay as shown on line 8. Next, the vertices are traversed in this subor-

87

of Edges

Time (sec)

Figure 6.4: Longest-path tree evaluation of 1000 dependency graphs with an increasing
number of edges.

der and each child is expanded (lines 9-10). As a next step, the edges are relaxed
by checking if the currently stored distance to the child is smaller then the current
path (lines 11-12). If so, a new longest-path is found to the child and stored as new
longest distance and duration (lines 13-16). Additionally, the calculation of the crit-
ical path durations is injected into the original single-source algorithm’s relaxation
step to reduce the runtime (lines 14-16). By line 18, the maximum distance to the
vertex s is known. If multiple edges point to s, then the edges from the parents
with the lowest distance can be removed to keep only longest-paths. At the end
of the loop for v (line 28), the subgraph is fully converted to a longest-path tree.
The single-source longest-paths algorithm from Sedgewick (2014) takes time propor-
tional to E + V as it visits each vertex and each node exactly once. Following (6.1)
and (6.2), the proposed FPTE algorithm determining all longest-paths and critical
paths durations takes time proportional to:

V∑
v=1

Emax(v) + v (6.4)

Hence, it is faster than the Bellman-Ford algorithm.

6.4.5.3 Results

Figure 6.4 shows the results from the longest-path algorithm evaluation. The pro-
cessing duration starts with a low slope at Figure 6.4 (a) and then increases in
a non-linear fashion towards Figure 6.4 (b) with the number of edges. The dur-
ations calculated with the FPTE algorithm matches to 99.4% with the empirical
data collected on the computing cluster. Consequently, hypothesis H6.1 can be
supported for the longest-path approach as the durations increase monotonically
with the number of edges. To further understand the most influential factors of
dependency processing, the processing duration correlations are analysed in detail
in the following section.

88

Time (sec)

Normalised Clusters, Depth, Edges, ...

Figure 6.5: Normalised correlations of the processing duration with the number of edges,
mean dependency degree, dependency depth, number of clusters and mean cluster size.

Table 6.2: Correlations of dependency measures with the processing duration.

Measure R R2 Function RMSE Fit

Edges 0.89 0.8 102 + 0.000405x2 32.35 0.93
Degree 0.89 0.8 102 + 405x2 32.35 0.93
Depth 1 1 113 + 0.1x 0 1

Clusters -0.84 0.72 25.12 + 83034/x 20.25 0.96
Cluster Size 0.98 0.97 25.12 + 83.034x 20.25 0.96

6.5 Dependency Analysis
In the previous section, the dependency processing algorithms were evaluated with
1000 generations of a dependency graph. The results in Figure 6.4 show the cor-
relation between the processing duration and the number of edges without detailed
analysis. This opens up research question R6.3: What effects have dependency graph
measures on the performance? In this section, the correlations of the processing dur-
ation with the edge count, dependency depth, dependency degree, cluster count and
cluster size are analysed in detail.

6.5.1 Correlations with Processing Duration

Figure 6.5 shows the normalised correlations of all dependency measures with the
processing duration. For the analysis, the Pearson product-moment correlation coef-
ficient R and the coefficient of determination R2 are calculated to evaluate if a linear
correlation between the measure and the processing duration exists. Additionally,
a linear and nonlinear model, the Root-mean-square error RMSE and Fit are cal-
culated for each measure. Fit is determined using the normalised version of the
RMSE with 1 − NRMSE to denote the model fit. The best-fit functions along
with the determined correlation metrics are shown in Table 6.2.

6.5.1.1 Edge Count

From the model fit in Table 6.2, the number of edges are found to have a quadratic
effect on the processing duration shown in Figure 6.5. This stems from the fact that
the probability to connect multiple vertices by adding a new edge is lower for initial

89

generations of the graph, where many vertices are connected by a single edge only.
With an increasing number of edges, the probability to connect multiple other edges
with a new edge increases in a quadratic fashion. Thereby longer paths are created,
thus increasing the processing duration.

6.5.1.2 Dependency Degree

In the same way as the number of edges, the dependency degree is a measure directly
related to the probability of a vertex connecting to other vertices. The mean vertex
degree increases along with the number of edges as the probability that a new edge
connects a vertex to a longer path also increases in a quadratic fashion (Table 6.2).
Hence, the normalised correlation of the dependency degree shown in Figure 6.5
matches the normalised correlation of the number of edges.

6.5.1.3 Dependency Depth

Concluding from the correlation of the edge count and the vertex degree, the mean
dependency depth has a linear influence on the processing duration as it directly
reflects the average length of the longest-paths. Figure 6.5 shows this linear cor-
relation along with Table 6.2, where the slope of the function matches the mean
processing delay for each vertex.

6.5.1.4 Cluster Count

The cluster count expresses how many unconnected clusters of vertices exist. Fig-
ure 6.5 illustrates how more clusters lead to shorter processing paths and thereby
influence the processing duration inversely as shown in Table 6.2.

6.5.1.5 Cluster Size

The cluster size signifies the mean length of connected components and thereby
dictates the maximum length for the longest-paths. As shown in Table 6.2, the
processing duration increases linearly with the cluster size. In Figure 6.5 however,
the duration stays below a perfect linearity for the majority of the time and then
jumps above the line close to the end. For a graph without edges, all vertices are
disconnected from each other. Thus, the number of clusters equals the number
of vertices with a cluster size of exactly 1. By adding some edges, small groups
of vertices become connected forming clusters of small sizes, e.g. 2-3. With the
further addition of more edges, small clusters become connected to other small
clusters forming clusters of larger sizes, e.g. 30-40. This continues until eventually
all clusters are connected to one single cluster. As a result, the cluster size jumps
whenever multiple clusters join to a single cluster until finally the size equals the
number of vertices.

90

6.5.2 Regressions for Processing Duration

Based on the results from the correlation analysis, two regression models are build
in order to approximate the processing duration for a given dependency graph. Two
measures build a linear correlation with the processing duration: the cluster size
and the dependency depth.

6.5.2.1 Cluster Size Based

For sparse graphs with a sparsity S / 1 the cluster size CS is steady and can be
used to estimate the processing duration. Using the mean processing delay dp and
the network delay dn from Chapter 5 the regression can be modelled as follows:

dreg,CS = CS · dp + dn if S / 1 (6.5)

Figure 6.5 shows the cluster size regression with a model fit of 96%. The cluster size
can be calculated very efficiently for the whole dependency graph through its weakly
connected components, however with an increasing sparsity S the approximation
results deteriorate.

6.5.2.2 Depth Based

A more exact approximation of the processing duration can be performed using
the processing depth if there are more edges than vertices in the graph. However,
it is more expensive to calculate the processing depths using a depth-first search
algorithm, as the depth has to be computed for every starting vertex. Equation (6.1)
and (6.2) denote the maximum number of edges and vertices for a DAG, where the
runtime for a depth-first search generally is limited to V +E. Using the depth ddep,
the regression can be modelled as follows:

dreg,ddep = dp + dp · ddep+ dn (6.6)

Figure 6.5 shows the depth regression with a model fit of 1 as the processing delays
for the evaluation are normally distributed around 0.1 (Table 6.2). The error of the
regression is distributed exactly as the mean processing delay serving as regression
slope.

6.6 Service Generation
To compare the performance of resource dependency processing with a traditional
cache-eviction approach, web services consisting of dependency graphs and traffic
traces are generated. Existing web services do not declare resource dependencies
explicitly, hence no data is available and the graphs must be generated. This opens
up research question R6.4: How can resource dependencies be generated? For the
generation, two algorithms are developed in this section. The first algorithm bases

91

Table 6.3: Graph and traffic parameters with distributions used to generate evaluation
data for the performance comparison.

Graph Based Parameter Distribution
Vertices V Uniform(100, 1000)
Edges E Based on clusters C and CS

Read/Processing RPR Uniform(0, 1)
Read Request RR Bernoulli(RPR)
Cache Hit/Miss HMR Uniform(0, 0.7)
Processing Delay dp HyperErlang(Uniform(1,10))

Weibull(Uniform(0.1, 10), 1)
Pareto(0.001, Uniform(1, 10))
Lomax(0.001, Uniform(1, 10, 0))

Clusters CC Uniform(10, 100)
Cluster Size CS Uniform(3, 10)
Traffic Based Parameter Distribution
Duration D Const(20)
Requests R Uniform(1000, 4000)
Path P Zipf(V , Uniform(10−6, 0.1))
Offset O FARIMA(R,D)

CMMPP(R,D)
FractionalBrownianMotion(R,D)
PoissonParetoBurstProcess(R,D)

its parameters on extracted values of six social network application APIs and the
second algorithm selects its parameters at random.

6.6.1 Parameters

For the generation, parameters are identified as listed in Table 6.3. Parameters
either relate to the dependency graph or the traffic traces.

6.6.1.1 Dependency Graph Based

The number of vertices V for each graph is distributed uniformly between 100 and
1000. The read/processing ratio RPR identifies the fraction of all resources that
are read only. A RPR = 0.3 means that 30% of all vertices are read only. For
each vertex in the graph, it is determined whether the vertex is a read or processing
vertex using a Bernoulli distribution distributed by the RPR. The cache hit/miss
ratio HMR determines how many vertices of the whole graph are marked as cached.
This parameter is only used by the traditional cache-eviction approach. Based on
work of Rajabi and Wong (2014) and Poggi, Carrera, Gavalda et al. (2014) the
processing delay dp for each vertex is calculated by uniformly choosing one of the
distributions listed in Table 6.3 for each graph. The HyperErlang(n) distribution
uses a probability vector of length n and the other distributions follow the standard
signatures Weibull(α, β), Pareto(k, α) and Lomax(k, α, µ) where α is shape, β is
scale, µ is location and k is a minimum value parameter. The number of clusters

92

and the cluster size is uniformly selected for each graph.

6.6.1.2 Traffic Based

For each graph, traffic for the durationD is generated with a uniformly selected num-
ber of requestsR. Based on the work of Katsaros, Xylomenos and Polyzos (2012) and
Visala, Keating and Khan (2014) the resource popularity P can be modelled using a
Zipf(n, ρ) distribution where n is the range and ρ is the Zipf parameter. The offset
O determines the arrival time of each request. The self-similar offset is modelled
following the work of Dick, Yazdanbaksh, Tang et al. (2014), Chen, Ghorbani, Wang
et al. (2014), Zukerman, Neame and Addie (2003), Chen, Addie, Zukerman et al.
(2015) and Donthi, Renikunta, Dasari et al. (2014) by using a Fractionally Autore-
gressive Integrated Moving-Average process FARIMA(R,D), a Circulant Markov-
Modulated Poisson process CMMPP(R,D), FractionalBrownianMotion(R,D) and
a PoissonParetoBurstProcess(R,D) where R is the number of arrivals and D is the
arrival interval. For FARIMA the AR coefficients are set to 0.99, the MA coefficient
is random uniformly distributed between 0 and 0.49 and the white noise has a vari-
ance of 1. For the CMMPP a superposition of four two-state arrival rate vectors
is used with a maximal arrival rate of 500. This rate is based on the maximum
throughput of a single node in the evaluation cluster. The Fractional Brownian Mo-
tion uses a uniformly distributed hurst index between 0.5 and 0.99 in order to ensure
self-similarity and the λ parameter of the Exponential distribution for the Poisson
Pareto Burst process limits the maximum arrival rate to 500. For each graph, one
of the models is selected at random for generation.

6.6.2 Service Based Graph Generation

In order to generate random dependency graphs exhibiting real-world properties, an
algorithm is developed by extracting parameters from six social network services:
The Facebook Graph API v2.2, the Twitter API v1.1, the Tumblr API v1, the
Instagram API v1, the Google Plus API v1 and the SoundCloud API v1.

6.6.2.1 Service Structure Graphs

For each service, all API resources are extracted as vertices while the dependencies
of the resources are extracted as edges into an API structure graph. Dependencies
are not declared in the API specifications, hence the effects of a request to a resource
are analysed by comparing changes in all resources before and after a request. The
changed vertices have a dependency on the initially requested vertex and need to
be added as dependency edges. Figure 6.6 illustrates all extracted service struc-
ture graphs. At Figure 6.6 (a) the Facebook structure graph is strongly connected
with the central vertex representing a user’s feed. Figure 6.6 (b) shows multiple
sub-resources of a tumbler post that are updated with the post and Figure 6.6 (c)
highlights weakly connected clusters with sparse dependencies of the Twitter API.

93

Figure 6.6: API structure graphs of six inspected real-world services with read and pro-
cessing vertices.

Table 6.4: Key figures of the extracted service parameters.

Measure Parameter Min Max Mean Var
Read/Processing Ratio RPR 0.58 0.85 0.71 0.014

Processing Delay dp 0.004 0.18 0.09 2.52
Cluster Size CS 14 235 81 6642

Dependency Depth ddep 0 4 0.38 0.71
Dependency Degree ddeg 0 14 0.57 2.79

For detailed inspection of all graphs the full evaluation dataset is provided as down-
load available at webscalingframeworks.org/graphs (2016).

6.6.2.2 Parameter Extraction

From the service structure graphs the parameter ranges are extracted to be used
for the generation of random dependency graphs. The results are presented in
Table 6.4. Using a goodness-of-fit hypothesis test, the measured parameters do not
follow a distribution. Hence, the algorithm selects random elements uniformly from
all captured parameter data.

94

123456710

89

11

1213

14

15161718

19

2021

22

2324

2526

27 28 29

303132

3334

3536373839

40 41 42

43444546

47 48 49

5051525354

5556

5758596061

6263

646566

6768

6970

7172

73747576

77

78

79

80

81

8283848586

8788

899091929394

9596

97
9899 100101

102103104105106107

108109110111112113

114115

116117118119120121

122 123 124

125126127

128 129 130

131132133134135

136137

138139140141142143144145146

147148 149150

151 152 153

154

155156

157158159160161

162163

164 165166167 168 169

170171172173

174175

176177178179

180181

182

183184

185186

187188

189

190191

192

193194

195196197198199200201202

203204

205 206 207 208209210

211212

213

214215

216217

218 219 220

221222

223224

225226227228

229 230 231

232

233234

235236237238239240241

242243

244245246247248249250

251252

253254 255256

257258

259260

261

262263

264 265 266

267268269

270271

272273274275276277

278 279 280

281

282283

284285

286287

288289

290291

292293294295296297298299300

301302

303

304305

306

307

308

309
310

311

312

313314

315316317

318319

320321322323

324 325 326

327328329330331332333334335336337338339

340 341 342

343344345

346347

348349350351

352

353

354

355

356 357358

359360361362363364365366367

368369

370371372373374375376377378379380381382383384

385386387

388389

390391

392393

394

395396

397398399

400401

402403404405406407408409410411

412

413414

415416

417

418

419420

421422

423424425426427428

429

430

431432433434

435436
437438439440

441442 443444445446447448449450451

452453

454455456457458459460461462463464465466467468469470

471 472

473474

475476

477478

479480481482
483 484 485

486487488489490491492493494

495496

497498

499500

501502503504

505506

507

508509
510

511

512513

514515516517518519520521

522 523 524

525526527528529

530531

532

533534

535

536537

538

539540

541542

543544 545546

547548549

550551

552553

554555

556557

558 559 560

561

562 563 564

565

566567

568569

570571

572573

574575

576577578579580581582583584585586

587588

589590591592

593594

595596

597598

599600601602603

604605

606607608609610611612613614615616617618619620621622623624625626627628

629630631632

633

634635

636

637638

639

640 641 642

643644

645

646647

648

649650

651652653654655656

657658

659660

661662

663664665666667668

669670

671

672673

674675676677678679680

681682

683

684685

686687688

689690 691692 693694

695696

697698

699700701702703704705706707708709710711712

713 714 715

716717718719720721722723724725726727728729730731

732733

734 735 736

737738

739740

741

742 743 744

745746747748749

750751 752753

754755756757758759760

761762
763764765766

767768769770771772773774775776777778779780781782783784785786787
788789

790793794795796797798799800791792

1
2

3
4

56

7

8

9

10

11

12

13

14

15

16

17

181920

21

22 23

24

2526

27
16628

2930

31

32

333435

3637

38

39

4041

42

4344

45

4647

48

49

5051

52
53

54

55
56

5758 5960

61
62

63

64

65
6667

68697071

72

73

74
75

76

77

7879

8081

8283

84

85

86

87

8889

90

919293

94

95

96

97

98

99 100

101

102103

104

105106107108109

110
111

112

113

114

115
116

117118119

120

121122

123
124 125 126127

128

129130131132 133

134

135

136

137138139140141142143

144

145

146

147

148149

150151152153 154155156

157
158

159

160

161

162

163

164

165167

168169

170

171

172
173

174

175

176496 177

178

179180

181

182183184 185

186

187

188189

190

191

192
193

194

195
196

197

198

199

200
201

202203

204

205 206

207

208
209

210

211212
213

214

215

216217218

219

220

221

222223

224

225

226

227
228

229

230

231232233234

235

236

237238

239

240

241

242

243244245

246

247

248249250 251252

253
254

255

256257

258

259260261

262

263

264

265

266

267

268

269270271 272
273

274

275

276

277278 279

280296281

282 283 284285 286287

288

289

290

291

292

293

294

295

297

298299300301302

303
304

305

306

307308

309
310

311312

313
314

315316317318

319

320
321 322323

324

325

326

327328329 330

331
332

333

334

335

336

337338339 340 341 342

343344

345346
347

348

349

350351 352353

354

355

356

357

358

359360361362

363
364

365

366 367432 368369370371

372

373
374

375

376
377

378

379

380

381382

383384

385386

387

388

389

390391

392

393394395 396397398399400

401

402

403

404

405406

407

408409 410

411

412413414

415

416

417

418419420

421

422

423

424425426427 428429 430

431

433

434435

436
437

438

439440 441

442

443444445 446447

448

449

450

451

452453

454455

456

457

458

459

460

461462463 464 465

466

467468469470471472473

474
475

476

477

478

479

480481482 483 484485 489486 487488490 491

492

493494495

497

498

499500

12345678910111213141516

1718

19

2021

222324252627282930313233343536

3738

39404142

4344

45464748

49 50 51

52

5354

555657

58 59 60

6162

63

64

65

6667

6869

7071727374757677

7879

808182

83 84 85

868788

8990

919293949596979899100101102103

104105

106107108109110111112113

114 115 116

117118119120

121122

123124125

126127

128 129 130

131132133

134135

136137138

139140

141142143144145146147

148 149 150

151

152153

154155

156157

158

159160

161162

163164

165166167168169170171172173174175

176177

178179180181182183

184185

186187188

189190

191

192193

194195196197198199

200201

202203204205

206207

208209210

211212

213214215216217218219

220221

222223

224225

226227

228229

230

231232

233

234235

236 237 238

239240241242243

244245

246247248249

250251

252253254255256

257258

259260

261262

263264265266267268269

270271

272273274275276277

278279

280

281282283284

285286

287288

289

290 291292

293294295

296297

298299

300

301302303

304305306307308309310311312

313314

315316317318319

320321

322323324325

326 327 328

329

330331

332333334335336

337338

339340341342343344345346347348349350351352

353 354 355

356357

358359

360361

362

363364

365366367368369370371372373374375

376377

378379

380381

382383384385

386 387 388

389390391392

393 394 395

396397398399400401402403404405406407408409410

411 412 413

414

415416

417418419

420421

422423424425426

427428

429430

431432

433434435436437438439440441442

443 444 445

446447448

449450

451

452

453

454455456

457

458459

460461462463464

465466

467

468469

470

471472 473474

475476477478479480481482483

484485

486487

488 489 490

491492

493494

495

496497498499

500501502503504505506507508

509510511512

513514515516517518519

520521

522523

524525

526527528

529530

531532533534535536537538539540

541542

543544545546547548

549550

551

552553

554555556557558559560561

562 563 564

565

566 567 568

569570571572573574575

576577

578579580581582583584585

586587

588589590591592593594595

596597

598599600601602603604

605606 607608

609

610611 612613 614615616617

618619620621

622623

624625626

627628

629630631632633

634635 636637

638639

640641

642643

644645

646647648649650651652653

654655

656

657 658 659

660661

662663

664665 666667

668669670671672673674675676677678679680681682683684685686

687688

689690691

692693

694695

696697

698699700701702

703 704 705

706707

708709710711712713714715716717

718719

720721722723724

725726

727728729730731732733

734 735 736

737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

753 754 755

756
757 758 759

760
761
762
763
764
765
766
767
768
769

770771

772
773
774
775
776

777 778 779

780781

782
783
784

785 786 787

788
789
790
791

792 793 794

795796

797

798799

800

1
2

35476

89

10
11

1213
14
15

16
17

1819
2021

22

232425

26

27

28

29
30

31

32

33

34
3536

37

38
3940

41

42

4344

45

46

474849

50

51

525354

55
56

57

58

59

6061

62

63

6465

66

6768

69
70

71

72

7374

75

76

7778

7980

81

8283848685 87

88

899091

92

9394

95

9697

98
99

100

101102103

104
105

106

107108109110

111

112113

114

115116117

118

119120 121122123

124125126

127

128129
130131132

133
134135

136
137

138

139140141142143144145146 147148

149150

151

152153154

155156

157

158

159

160161162

163

164

165166

167

168169170 295
171

172173174175176177178 179

180

181

182183

184

185

186187

188

189
190

288191

192193

194

195196197

198199 200201202203

204205

206 207208

209

210211 212213214215216217218219

220
221

222223

224225

226227 228229230 231

232

233234

235

236

237238 239

240

241

242250

243 244

245

246247

248249

251

252253

254255

256
257
258

259

260261

262263 264265266267268

269270

271272273274275276277 278

279
280

281

282

283
284

285

286

287
289

290
291314

292293

294

296297
298299300301302 303304305 306

307

308309310311 312313 315316 317318 319320 321

322

323324325326
327328 329330

331
332

333334335

336

337338339340 341342343 344345346347348349350
351352353

354355356357358359360361362 363364365366367368

369370

371
372

373

374375

376

377378

379380381382

383

384385

386

387 388

389
390391392

393
394

395396
397

398399

400401
402

403

404

405

406407

408409410 411

412

413

414
415

416

417471

418

419

420
421 422423424

425

426427 428429

430

431

432

433434

435

436

437438
439

440441442443
444445
446 447

448

449450451

452

522453454455

456

457458556459 460461462463464

465
466

467

468

469470

472

473474475

476

477

478479

480481

482483

484

485486
487

488

489
490

491492493

494
495

496

497498

499 500

501
502

503504505506 507

508509

510
511

512513 514515

516

517518

519520

521523 524525526527

528529

530531

532

533534535536537

538

539540
541

542543

544

545546

547548

549

550551

552

553

554555

557

558
559

560561

562563

564

565

566567

568

569570

571

572573
574

575

576577

578

579

580

581

582

583593

584585

586

587

588589

590

591592

594
595596

597
598616
599

600

601

602603604

605
606607

608

609610611612
613614615

617

618

619620621

622

623

624

625 626627 628629
630

631

632

633634

635636
637

638
639

640641642
643644645646

647

648

649

650

651

652653 654655656657

658

659660

661

662

663664

665666

667668669 670671

672

673

674

675
676

677678679680

681682

683684

685

686

687

688
689

690

691692

693

694
695

696697 698 699

700

701702

703

704705
706

707

708709

710

711712
713

714715

716
717

718719

720

721

722723

724

725

726

727728 729

730731

732733734

735736737

738
739740741

742743744745746747748749750751
752753754

755756757758759 760761762763764765

766773

767

768

769770 771772

774775

776777778

779

780

781

782783

784
785

786 787788

789790

791

792793

794

795
796797

798

799800

1

2

3
4

5

6

7
8

9

10

11

12

13

14

1915

16

17

18

20

21

2223

24

25

26
27

28 29
30 31 32

33

34
35

36

37

38

39

40

4142
4344

4546
47

484950
5152

53

54 55 56

57
5810559

6061
62 63 646566

6768
6970

71
72737475

76

7778

7980

818283
84

85
86

87

88

89

909192
9394

9596979899100101102
103104

106
107108109 110 111

112113114115116117118119120 121
122 123 124

125126127128129130 131132
133
134

135136
137
138139140141142143

144145
146
147148

149150
151
152153154155

156157
158
159

160161
162
163164165166167168169170171172

173 174 175

176177178179180181182183184185186187188189190191192193194195196197198199200201
202203

204
205206207208209210211212213214

215216
217
218

219220 221222
223
224225226 227228229230231232233 234235236 237238239240241242 243244245246247248249250251252253254255 256257258259260261 262263264265 266267268269270 271272273274275276277278 279280281282 283284

285
286

287288
289

290

291

292

293
294

295

296297

298

299

300

301302303
304

305

306
307

308

309 310
311

312

313

314315
316

317

318

319320
321

322

323

324 325

326327328329330331332333

334

335

336

337338339340

341

342

343344

345

346347348349350351

352

353354 355

356

357358359 360361362363

364
365

366367
368 369 370

371372

373

374 375376

377

378379380 381382383384385386387 388389390391392393394395396 397 398 399 400

1

2 3

4

5

67

8

910

11 12

1314

15

1617

18

19 20

21

222324

252627282930313233

34 35 36

37

3839

40

4142

4344

454846 4762

495051525354555657585960

6176

63 64 65

666768697071

72 73 74

7579

77

7883

8081

82

84

859186

878889

90125

92

93 94 95

96979899

100101102103

104105106107108109110111112113114115116117118119120121122123

124

126127128129

130131

132133

134 135 136

137138

139140

141142143144

145146

147

148 149 150

151152153154155156157158159

160161

162163164

165166

167168169170171172173

174175

176177178179180181

182183

184185186187188189190191192193194195196197198

199 200 201

202203204

205206

207208209210

211212

213214

215216

217218219220221222

223224

225226227228229230231232

233234

235

236 237

238239240

241

242

243244245

246 247248

249

250 251

252

253254

255

256257258

259

260261262263264265266267268269270271

272 273 274

275

276 277 278

279280281282283

284285

286287288289290291292293294295296297298299300301302303304305

306

307308

309

310

311 312 313

314

315316

317
318319320321

322323

324 325 326

327328329330331

332333

334335336337338339340341342

343344

345346347348349350

351352

353354355

356357 358359

360

361362

363364365366367

368369

370

371372

373374

375376

377378

379380 381382

383384385386387

388389

390

391392

393 394 395

396397398399

400401

402403404405406

407408

409

410411 412413414415

416417

418419

420

421422423424

425

426427 428429

430431432433434435436

437438

439

440 441 442

443444

445446

447448449450

451452

453454455456457458459460461462463464465466467468469470

471472

473474

475476

477478479480481482483484485

486487

488489490491492493494

495496

497498

499500

501502503504505506

507508

509510511

512

513

514

515

516517

518 519

520

521

522 523 524

525526

527528529

530531

532533534535

536 537 538

539540541542543544545546547

548549

550551552

553554

555

556557558559

560

561562563564565566567568569

570 571 572

573

574575

576

577578

579580581582583584585586587

588589

590591592593594595596

597598

599600601602603604605606

607 608609610 611 612

613614615616617

618619

620 621 622

623624

625626

627628629630631632633634635636637638639640641642643644645646

647648

649650651652653654655

656657

658

659 660

661

662

663664

665 666

667668669670671672673674675676677678

679680

681

682683

684685686687688689690691692

693694

695696

697 698 699

700701702703704705

706707

708709

710

711

712

713

714

715716717718719720721722723724725726727728729730

731732

733

734
735

736

737
738

739

740

741

742743

744

745746

747
748749

750

751 752 753

754

755756

757758

759 760 761

762763

764765766767

768769

770771772773

774775

776777778779780781782783784785786787788789790791792793

794795

796797798

799800

Figure 6.7: Resource graphs generated with the service based graph algorithm.

6.6.2.3 Algorithm

The Service Based Dependency Graph (SDG) algorithm is developed by superposing
and manipulating multiple adjacency matrices as follows:

1. Create a sequencer function for the dependency depth that returns continuous
sequences of 1s followed by a terminating 0, where the length of the sequence is
drawn randomly from all service structure graph depths, e.g. 111011011110 . . .

for 3, 2, 4.

2. Create a sequencer function for the dependency degree in the same fashion as
the depth sequencer function.

3. Create a N ×N matrix, where N is drawn randomly from all service structure
cluster sizes and fill it with 0s.

4. Fill the matrix diagonal above or below the main diagonal with a sequence
from the depth sequencer function.

5. Fill the matrix columns until the diagonal above or below the main diagonal
with sequences from the degree sequencer function.

6. Create another matrix of size N and fill it with random samples of a Bernoulli
distribution where the probability equals a random read/processing ratio.

7. Multiply the read/processing matrix with the depth/degree matrix.

8. Repeat 3-7 and concatenate the resulting cluster matrices until the desired
number of vertices is reached.

95

1 2 3 4 5 6 7

89

101112

13

14

15

161718192021222324252627282930313233343536373839

40

41

42

43

4445

46474849505152
53

54555657

5859

6061626364656667686970717273747576777879808182

8384

85

8687

888990919293949596979899100

101102

103104
105

106107108109

110111

112113114115116117118119120121122123124125126127

128129
130131

132133134135136137138139140141142143144145146147148149150151152153154
155

156

157158

159160161162163164165166167168169170171

172173

174175

176177

178179180181182183

184185

186187188189190191192193194195196197198

199200

201202203204

205

206

207
208209

210211212
213

214215216217218219220221222223224225226227228229230231232233234235236237

238239

240241242243244245246247248249250251252253254255

256257

258

259260

261262

263264

265 266 267

268

269

270

1

2

3

4 5

67

8

9

10

111213

14

15

16

17

18
192021222324

25

26

27 28

29

30

313233343536

37

38394041

42

434445464748

49 50 51

525354

5556

57

59

6061626364656667

68697071

72

73

7475

76

7778798081828384858687888990919293949596979899100101102

103

104105

106

107108109110111112113114115

116

117

118

119120121122

123124

125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162

163

164

165

166

167

168169170171172173174175

176 177

178179

180181

182183

184185

186187188189190191192

193194

195196197198199200201

1

2

3

45

6

7 8

9121011 111131415161718 19
2021

22

232425262728

29

30
31

32

33

34

35

36

37 3839 4041 42434445464748495051525354

55

5657

58

59
60

61 62

63

67 64

65
6668

69

7071

72 73747576 79 77788081828384858687888990

91

92

93

94 95
96 97

9899

100101
102

103 104

105106

107108

109

110 112

113

114

115

116
117

118
119

120

121

122
123124

125

126

127

128
129 130

131

132

133134135

136
137

138139 140
141

142143

144

145

146 147
148

149

150

151152

153

154

155
156 157

158
159

160
161

162

163

164 165

166 168

167169

170

171

172

173 174

175176
177

178

179180

181

182
183

184
185

186187

188 189

190

191

192

193
194

195
196

197198

199200

201

202

203204
205

206207

208

209

210 211

212213214

215

216

217

218
219

220
221

222
223

224225

226

227
228

229

230
231

232 233234

235 236
237

238
239240

241
242
243

244245

246

247

248

249250
251

252

253
254255

256
257

258

259
260

261

262
264 263265

266

267

268
269

270

271
272273 274 275

276277

278

279

280

281
282

283 284 285

286287288

289

290

291 292
293

294295296297

298
299301 303

300

302

304305306

307 308
309

310

315 311
312

313
314

316
317 320318

319
321

322323324

325

326

327

328

329

330331

332333334 335 336337 338339340341342

343

344

345

346347
348349

350
351

352353
354

355356

357
358 359
360

361
362

363
364

365
366

367

368

369

370
371

372
373

374

375
376

377
378

379380
381

382386 383
384

385

387

388
389 390 391

392

393

394

395

396397

398

399
400

401402

403

404

405

406

407
408

409

410

411412

413

414

415
416

417
418 421

419

420

422423

424

425

426
427 428429

430431432

433434435
436

437
438

439

440

441

442443
444

445

446

447

448449

450

451

452
453

454

455

456

457

458459

460
461

462

463

464
465

466

467 468

469

470 471
472

473474475476477

478
479

480

481

482
483

484485486

487
488

489

490

491492

493494495

1

2

3

4

5

6

789101112131415161718

19

202122

23 24
25

2627

28 29

30

3132 33

34

35 36

37

38

39

4041

42

4344

45

4647

48

4950 5152535455

56

57 58

59

606162

63

64

65

66
67

68
69

70 7172

737475

76 77

78

79

8081

82

83

84

85

8687 88 89

90

91

92

93

94 95

96 97
98

99

100

101

102

103

104
105

106

107

108

109

110 111

112

113114115

116

117 118
119

120121

122

123

124125126

127
128

129

130

131

132

133
134

135

136

137

138

139

140

141142

143

144145

146
147
148
149
150
151152153

154
155
156

157158

159
160
161
162

163

164

165

166
167

168
169
170
171

172

173
174
175

176 177

178

179

180

181

182183

184 185
186187

188

189

190

191

192

193

194195 196

197

198

199 200

201

202

203

204

205
206

207

208
209
210
211
212
213
214
215
216

1234585678910111213141516

17181920212223242526272829303132333435363738394041424344454647484950515253545556

5758

59
60

61

62

63

64656667686970

7172

737475767778798081828384

86

87888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121

122

123

124

125

126

127128129130131132133

134135

136

137

138

139

140

141142143144145146147148149150151152153154155156157158159160161162163164165166167168169

170 171172

173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203

204

205

206

207

208

209

210

211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254

255

256

257

258

259

260 261262

263

264

265

266

267 268

269 270

271

272

273

274

275

276

277

278

279

280

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656869707172737475767778798081828384858687888990919293949596979899100101102103104 105106 107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152

Figure 6.8: Resource graphs generated with the fuzzy graph algorithm.

By strictly manipulating either the upper or lower triangular portion of an adjacency
matrix, the directed acyclic graph property of the resulting matrix is ensured. In
addition, for each vertex a processing delay is drawn randomly from the service
data. Furthermore, the vertex is marked as cache-hit or miss using the distribution
shown in Table 6.3. The only input parameter to the SDG algorithm is the number
of maximum vertices to be used as termination criteria. Figure 6.7 shows sample
resource graphs generated with the SDG algorithm.

6.6.3 Fuzzy Graph Generation

As the service based graph generator strictly uses parameter values drawn from the
analysis of the service structure graphs, a supplementary Fuzzy Dependency Graph
(FDG) algorithm is developed creating graphs with a wider range of parameters.
This ensures the evaluation is not overfitted to the analysed service structure graphs.
The fuzzy graph generation steps are as follows:

1. Create C adjacency matrices with size V/C and randomly distribute a total
of E edges in the upper or lower triangular portion.

2. Multiply the columns with a sequence of 1 and 0 distributed by the read
processing ratio.

3. Concatenate all resulting cluster matrices.

The distributions used for the parameters are listed in Table 6.3. As for the SDG,
the FDG additionally determines a processing delay and cache-hit for each vertex.
The input parameters to the FDG algorithm are the number of vertices V , the
number of edges E and the number of clusters C. Figure 6.8 shows sample resource
graphs generated with the FDG algorithm.

96

6.7 Performance Modelling
In order to analyse the performance analytically a model which calculates the pro-
cessing duration is developed. The model is created for both a resource dependency
approach and a traditional approach. The parameters serving as input to the model
can be calculated from the structure of an application as shown in Section 6.3. Fur-
thermore, the model allows to compare the performance of both approaches in order
to find the approach best suited for a specific application. In Section 6.8 the model
fits are determined to answer research question R6.5: How well can the dependency
processing duration be modelled?

6.7.1 Processing Duration

The processing duration from Chapter 5 is extended by replacing the dp constant
with an equation explicitly calculating the processing duration based on the depend-
ency graph.

6.7.1.1 Traditional Processing

The processing duration dp for the TP approach where a web service directly receives
every request but can only serve a fraction of the resources defined by the cache
hit/miss ratio HMR from a cache is modelled as:

dp,TP = HMR · dl + dn + (1−HMR) · dp (6.7)

The lookup delay dl describes the time it takes to lookup an item in the cache
and the network delay dn is modelled as linear or quadratic variable as shown in
Section 5.5.

6.7.1.2 Resource Dependency Processing

The resource dependency processing (RDP) approach is based on the linear cor-
relation between the cluster size CS and the processing depth ddep as analysed in
Section 6.5. If the sparsity is S / 1 the processing duration is modelled as follows:

dp,RDP = (dn + CS · dp) · (1−RPR) if S / 1 (6.8)

If the sparsity S � 1, the more expensive to determine dependency depth ddep is
used:

dp,RDP = (dn + dp + ddep · dp) · (1−RPR) (6.9)

In contrast to the traditional processing approach, the resource dependency pro-
cessing approach receives only a fraction of all requests defined by the read/processing
ratio RPR. All other resources are served directly from the resource database and

97

Delta Duration

Model Parameters RPR, HMR, Processing Delay, ...

Figure 6.9: Analysis of the influence and break-points of all model parameters to the
duration deltas.

do not influence the processing duration.

6.7.2 Processing Duration Delta

In order to compare both processing approaches, the processing duration delta can
be modelled as:

∆dP = dp,RDP − dp,TP (6.10)

Figure 6.9 illustrates the influence of all model parameters on the duration deltas
where each parameter is plotted in the range of 0 to 1 while all other parameters
remain constant with default parameters RPR = 0.45, HMR = 0.5, dl = 0.01, dp =

0.5, ddep = 0.5, CS = 0.5 and dn = 0.1. For negative duration deltas the resource
dependency processing approach is faster than a traditional processing approach. A
greater absolute slope in Figure 6.9 means that the analysed parameter has a greater
influence on the processing duration. Consequently, the read/processing ratio RPR
has the greatest influence on the processing duration as it directly affects the number
of requests that need to be processed. The RPR is followed by the hit/miss ratio
HMR which determines the amount of cached resources in the traditional processing
approach. The processing delay dp, the dependency depth ddep and the cluster size
CS have equal influences on both approaches. In the traditional approach, a greater
lookup delay dl negatively influences the caching performance and the network delay
dn is applied to every request. The resource dependency processing approach uses
the processing tree, thus the network delay only applies to the initial request and
its response.

6.7.3 Relative Performance Improvement

To calculate the factor of improvement the resource dependency processing exhibits
over the traditional processing, the relative performance improvement is defined as

98

follows:

RPI =
dp,TP

dp,RDP

− 1 (6.11)

For example, a positive RPI of 2.3 shows that the performance using resource de-
pendency processing is 2.3 times better than the traditional processing performance.
Similarly, a negative RPI means that a traditional processing is faster.

6.7.4 Break-Even Points for Processing Duration

A break-even point calculation allows to determine the exact value of a parameter
where the processing duration of both the traditional processing TP and the re-
source dependency processing RDP are equal. The break-even point based on the
dependency depth ddep can be calculated as follows:

ddep =
−dl ·HMR + dp ·HMR− dn ·RPR− dp ·RPR

dp · (−1 +RPR)
(6.12)

Based on the cluster size CS, the break-even point is calculated as:

CS =
−dp − dl ·HMR + dp ·HMR− dn ·RPR

dp · (−1 +RPR)
(6.13)

Figure 6.9 illustrates the break-even points for all parameters where ∆dP is zero.

6.8 Performance Evaluation
The analytical modelling of the performance opens up research question R6.6: How
is the performance compared with a typical traditional processing approach? Thus, in
this section the service based SDG and fuzzy graph FDG generation algorithms are
used to compare the performance of the proposed resource dependency processing
approach with a traditional processing approach. The evaluation is conducted in an
aggregated combined case, best case, worst case and average case scenario, where the
fit of the performance models developed in the previous section is evaluated. Further,
four series of graphs with increasing graph measures are created to evaluate the
influence of different structures on the performance. Finally, the results are mapped
to structures observed in real-world APIs.

6.8.1 Aggregated Performance

For the aggregated evaluation 1000 web services are generated with the service based
graph algorithm and further 1000 web services with the fuzzy graph algorithm. For
each of the 2000 web services, a distinct traffic trace is generated following the
distributions from Table 6.3. The key figures of all generated web services are listed
in Table 6.5. The standard deviation (SD) of the path popularity P shows how
much the requests spread to different resources and the SD of the offset O gives an

99

Table 6.5: Key figures of the generated evaluation data.

Service Based Parameter Min Max Mean SD
Vertices V 100. 1000. 537.6 265.2
Edges E 18. 2127. 408.82 332.45

Sparsity S 0.15 2.89 0.77 0.48
Clusters C 41. 807. 338.62 188.7

Cluster Size CS 1.16 3.06 1.68 0.38
Dependency Depth ddep 0.15 1.69 0.58 0.29
Dependency Degree ddeg 0.14 0.93 0.43 0.17

Processing Delay dp 0. 0.13 0.04 0.03
Cache Hit/Miss HMR 0. 0.7 0.35 0.2

Traffic Parameter Min Max Mean SD
Requests R 1002. 4000. 2496.89 867.48

Read/Processing RPR 0. 1. 0.49 0.29
SD Path Popularity P 22.56 229.64 121.19 57.66

SD Offset O 4.2 7.34 5.83 0.34
Fuzzy Parameter Min Max Mean SD

Vertices V 30. 1000. 347.11 215.46
Edges E 0. 4095. 320.45 488.07

Sparsity S 0. 4.18 0.82 0.82
Clusters C 10. 872. 188.84 153.95

Cluster Size CS 1. 10. 2.49 1.78
Dependency Depth ddep 0. 4.05 0.72 0.72
Dependency Degree ddeg 0. 4.04 0.71 0.72

Processing Delay dp 0. 0.22 0.07 0.05
Cache Hit/Miss HMR 0. 0.7 0.36 0.2

Traffic Parameter Min Max Mean SD
Requests R 1000. 3994. 2488.43 870.15

Read/Processing RPR 0. 1. 0.5 0.3
SD Path Popularity P 7.68 227. 79.86 47.61

SD Offset O 4.35 7.32 5.82 0.34

overview of the request arrival times. For detailed inspection of all graphs and traffic
traces and to ensure the reproducibility of the results, the full evaluation dataset is
provided as download available at webscalingframeworks.org/graphs (2016).

6.8.1.1 Implementations

All graphs are evaluated on the Pi-One evaluation cluster (Section 2.8) where a
combination of two machines for a single test is used. One machine implements
the web service with the generated resources and processing delays and the other
creates requests according to the generated traffic trace. Each graph is tested with
three different web service implementations: The traditional processing implement-
ation responds with either the cached value or processes the value depending on the
generated resources. The resource dependency processing implementation processes
the request by traversing the processing tree while stalling the response until the full

100

Relative Performance Improvement

Figure 6.10: Relative performance improvements when using resource dependency pro-
cessing over traditional processing.

tree is processed. The third implementation, the asynchronous resource dependency
processing (ARDP) stalls the response only until the first level of the processing
tree is finished processing and continues to process the rest asynchronously in the
background.

6.8.1.2 Request Modes

Further, graphs are evaluated in two modes. In requester mode (RM) the requesting
machine uses the generated traffic. In sequencer mode (SM) the generated traffic is
bypassed and each resource of the graph is requested exactly once. This is done in
order to measure the influence of the traffic on the performance.

6.8.1.3 Empirical Data and Modelled Data

The empirical data is collected by measuring the accumulated processing time for
each request. The processing times for all three implementations are compared in
two modes, where a lower accumulated processing time is better. Additionally, the
models developed in Section 6.7 are used to calculate the accumulated processing
times and the model fits are determined. In total over 850 thousand resources are
evaluated with over 6 million requests in 2000 web services. To compare the perform-
ance, the relative performance improvements are calculated for service based graphs,
fuzzy graphs and all graphs combined in the resource dependency processing and
asynchronous resource dependency processing implementations both in requester
and sequencer mode. Consequently, there exist 4 ·2000 RPIs, where a positive RPI
denotes the factor of improvement the resource dependency processing approach ex-
hibits over the traditional processing approach. Further, the results are evaluated
in four cases, where each case individually limits the range of the read/processing
ratio RPR and hit/miss ratio HMR.

101

6.8.1.4 Combined Case Results

In the combined case, the results of all aggregated graphs are presented. Figure 6.10
shows the quantiles of the relative performance improvement where the size of the
boxes around the median divide the results in equal parts regarding the first quartile
and the third quartile. As the minimum and maximum relative performance im-
provement factors have a high variance, the whiskers are intentionally left out in
Figure 6.10 to be able to visualise quantiles in a meaningful way. In total, 59% of all
combined case services are faster using resource dependency processing rather than
traditional processing.

6.8.1.5 Best Case Results

From Figure 6.9 follows, that for all read/processing and hit/miss ratios between 0.0
and 0.3 the resource dependency processing is faster than the traditional processing.
Consequently, for the best case aggregation both ratios are restricted to be within
the 0.0-0.3 range. Figure 6.10 illustrates median performance improvements of a
factor higher than four for the service based graphs, 25% for the fuzzy based graphs
and a factor of almost two for the combination of both. In total, 79% of all best
case services are faster using resource dependency processing rather than traditional
processing.

6.8.1.6 Worst Case Results

The worst case aggregates results in the ranges where in Figure 6.9 the traditional
processing is faster. Thus, the read/processing ratio is limited to the range between
0.6 and 1.0. The hit/miss ratio is limited to the range between 0.5 and 0.7 as this
is the maximum evaluated hit/miss ratio (Table 6.5). The median performance
improvements illustrated in Figure 6.10 are -34% for the service based graphs, 5.4%
for the fuzzy based graphs and -21% for the combination of both. In total, 37% of
all worst case services are faster using resource dependency processing rather than
traditional processing.

6.8.1.7 Average Case Results

For the average case aggregation, results in the ranges where in Figure 6.9 both ap-
proaches exhibit similar performance are selected. Consequently, a read/processing
ratio in the range between 0.3 and 0.6 and a hit/miss ratio in the range between
0.3 and 0.5 are used. Further, the selected ranges are confirmed to be within typ-
ical ranges as presented by Du and Wang (2015) and Songwattana, Theeramunkong
and Vinh (2014). As shown in Figure 6.10, the median performance improvements
are 25% for the service based graphs, 9.4% for the fuzzy based graphs and 20% for
the combination of both. In total, 62% of all average case services are faster using
resource dependency processing rather than traditional processing.

102

6.8.1.8 Model Fits

The processing duration delta ∆dp is calculated for all 8000 evaluations and com-
pared to the empirical performance results. The residuals of all evaluations have
a root-mean square error of RMSE = 30.4. Using the normalised RMSE to put
the errors in relation to the observed values (Section 6.5) the Fit is calculated as
1−NRMSE. The mean fit for the cluster size based model is FitCS = 0.96 and the
mean fit for the dependency depth based model is Fitddep = 0.98. This implies that
both duration delta models have very good fits. Further, it is observable that the
cluster size based model is cheaper to compute while the dependency depth model
is more accurate.

6.8.2 Structure Based Performance

The structure based evaluation is performed to analyse the effects of different graph
structures on the performance. Therefore, four series of graphs with increasing
graph measures are created and performance tested with the resource dependency
processing and a traditional processing approach. As presented in Figure 6.9, the
major performance influencing parameters are the read/processing ratio and the
cache hit/miss ratio. In order to analyse the effects of the graph structures only,
for all series both the read/processing ratio and the hit/miss ratio are set to their
calculated performance break-even points RPRBEP = 0.58 and HMRBEP = 0.44.
A series of five graphs is created for an increasing dependency depth in Figure 6.11
(a-e), dependency degree in Figure 6.11 (f-j), cluster size in Figure 6.11 (k-o) and
number of clusters in Figure 6.11 (p-t). The processing delay for each resource is
set to 0.2 seconds and for presentation issues, all graphs have a total of 50 vertices.
Each series starts with a low value of the measure that increases in five steps to a
maximum measure as detailed in Table 6.6. The graphs are created using a special
version of the fuzzy dependency graph generator, where the desired graph measure
(depth, degree, cluster size and count) is set instead of letting the algorithm choose
a random value.

6.8.2.1 Performance Results

The performance is calculated using the processing duration delta model, where
negative values indicate a better performance when using our proposed resource
dependency processing approach. The results are presented in Figure 6.11 and
Table 6.6. From all 20 graphs, the performance using the resource dependency
approach presented in this thesis is better for 13 structures (a-b,f-h,k-n,q-t). The
increasing depth in the depth series (a-e) has a major influence on the performance
as the length of the chains as seen in (d-e) massively increases the processing dur-
ation. An increasing degree (f-j) has a minor influence on the performance as most
dependencies can be processed in parallel. The growing mean cluster size series in

103

Figure 6.11: Structure based results of four series of increasing graph measures.

(k-o) has an effect on both the depth and the degree, where a lower cluster size
results in lower maximal depths. Finally, the increasing total number of clusters
series (p-t) is tightly inversely related to the mean cluster size. Thus, with many
clusters the performance is better as the maximal depth is reduced.

6.8.2.2 Mapping to Real-World Structures

When searching for resemblance between graphs in Figure 6.6 and Figure 6.11, it
is noteworthy that Figure 6.6 presents structure graphs, where Figure 6.11 presents
full resource graphs (for distinction see Table 6.1). To extract resource graphs from
structure graphs as presented in Figure 6.6, variables for the number of users, posts,
comments, photos etc. majorly influence the measures of the resulting resource
graph. Thus, it is suggested that similarities must be compared with care. Face-
book’s rather centralised structure can be extracted to graphs similar to Figure 6.11
(l-m) as the centralised structure is based around clusters of users. A single user
in Instagram, Google Plus or Tumblr has a smaller cluster of resources leading to
structures more similar to Figure 6.11 (g,h,s). This leads to an increased processing
duration with Facebook’s structure compared to more decentralised structures such
as Twitter’s, Instagram’s or Tumblr’s. However, it is suggested that this stems
from the massively higher range of functions Facebook offers compared to the other
platforms.

6.9 Discussion
In this chapter, an efficient resource database update mechanism that allows to build
scalable web service architectures with optimised request routing has been presen-
ted. With respect to R6.1 How can resource dependencies be measured and stored?,

104

Table 6.6: Structure based performance results for Figure 6.11.

Measure Param Dependency Depth Series (a-e)
Dependency Depth ddep 0.5 2. 3.4 4.7 6.
Dependency Degree ddeg 0.5 0.8 0.86 0.9 0.92

Cluster Size CS 2. 5. 7.1 10. 13.
Number of Clusters C 25 10 7 5 4

Processing Delta ∆dp -0.16 -0.034 0.081 0.19 0.3
Measure Param Dependency Degree Series (f-j)

Dependency Depth ddep 0.5 1.5 2.5 3.5 4.5
Dependency Degree ddeg 0.5 1.5 2.5 3.5 4.5

Cluster Size CS 2. 4. 6. 8. 10.
Number of Clusters C 26 13 9 7 6

Processing Delta ∆dp -0.17 -0.083 -0.0064 0.071 0.14
Measure Param Cluster Size Series (k-o)

Dependency Depth ddep 0. 2.6 2.9 3. 6.4
Dependency Degree ddeg 0. 1.9 2.6 2.7 4.2

Cluster Size CS 1. 16. 31. 46. 61.
Number of Clusters C 50 4 2 2 1

Processing Delta ∆dp -0.2 -0.035 -0.0044 -0.099 0.3
Measure Param Number of Clusters Series (p-t)

Dependency Depth ddep 4.8 1.6 1. 0.81 0.55
Dependency Degree ddeg 3.2 1.4 0.96 0.79 0.67

Cluster Size CS 50. 9. 5. 4. 3.
Number of Clusters C 1 6 10 13 17

Processing Delta ∆dp 0.2 -0.078 -0.12 -0.14 -0.16

it was shown that resource dependencies can be stored as directed acyclic graphs,
where vertices represent resources and edges dependencies. Further, the dependency
depth, dependency degree, cluster count, cluster size and sparsity were identified as
the most influential graph measures. With respect to R6.2 What algorithm can be
used to optimise the performance of processing?, it was found that applying shortest-
path algorithms for dependency processing is not suitable as the processing order
needs to be maintained. Hence a longest-path algorithm combining a topological
sort with dynamic programming which determines the processing order in linear
time was developed. With respect to R6.3 What effects have dependency graph
measures on the performance?, it was further found that the dependency depth and
cluster size have a linear correlation with the processing duration, where the accur-
acy of regressions based on both measures depends on the sparsity of the graph.
With respect to R6.4 How can resource dependencies be generated?, the generation
of random dependency graphs was based on service structures where the parameters
were extracted from six real-world social applications and a fuzzy algorithm with
random parameters. With respect to R6.5 How well can the dependency processing
duration be modelled?, the processing duration was found to be adequately mod-
elled based on the cluster size and the dependency depth. This allows to replace

105

the constant resource dependency processing delay from Chapter 5 with an exact
model. The cluster size based model has an overall model fit of 96% and is cheap
to compute, where the dependency depth based model has a model fit of 98%, thus
being more accurate but also more expensive to determine. The duration delta and
relative performance improvement enables to compare the performance of a tradi-
tional processing approach versus a resource dependency approach. Finally, with
respect to R6.6 How is the performance compared with a typical traditional pro-
cessing approach?, the evaluation of 2000 web services with 850 thousand resources
and over 6 million requests showed the combined synchronous and asynchronous
resource dependency processing approach to be up to a factor of two faster than a
traditional processing approach.

6.10 Summary
In conclusion, it was shown that the PRSM pattern that depends on the fast pro-
cessing of dependencies can be implemented with algorithms that are able to process
dependencies in linear time. The processing performance directly depends on the
structure of the application. Long dependency paths negatively influence the per-
formance as they must not be processed in parallel but in a correct sequential order.
The analysis of the existing applications however showed, that even complex resource
graph structures such as those from Facebook or SoundCloud exhibit a maximal path
depth of 4. When introducing a detailed resource graph structure analysis into the
development process, it can be expected that the resource dependency depth can
further be reduced to provide an optimal basis for resource dependency processing.
Consequently in the following Chapter 7, a portable and interoperable prototype of
a WSF and an application created with a WAF is designed and evaluated to deliver
optimal dependency processing performance.

106

7. Cloud Portable and Interoperable
Prototype Implementation and Evaluation

7.1 Overview
In this chapter, a cloud portable and interoperable prototype implementation of a
WSF is proposed. It is shown how existing web applications can be integrated into
a WSF to enhance the scalability and portability. Further, a model to calculate and
compare the processing cost and storage space of resources is developed. The model
is evaluated with a traditional processing approach and a dependency processing
implementation that is integrated into a WSF. Finally, the results of the traditional
and the dependency processing approach are compared to analyse the processing cost
and storage requirements. The literature review in Chapter 3 identified four open
research questions related to the cloud portable and interoperable implementation
and evaluation of a prototype:

• R7.1: How can modules and components be designed in a portable and inter-
operable fashion?

• R7.2: What needs to be done in order to integrate a traditional app into a
WSF?

• R7.3: How well can the processing cost and storage space required for de-
pendency processing be modelled?

• R7.4: How is the performance trade-off between processing cost and pro-
cessing duration when using a dependency processing approach?

The remainder of the chapter is organised as follows: Section 7.3 examines the
prototypical implementation of a cloud portable and interoperable WSF. Section 7.4
integrates and extends an existing web application to support operation by a WSF.
Section 7.5 develops models to analyse the processing cost and storage size required
for dependency processing, while Section 7.6 evaluates both the performance and
model fits with the evaluation cluster. Section 7.7 presents the results and provides
answers to the aforementioned research questions. Finally, Section 7.8 concludes the
chapter with a summary of the presented work.

7.2 Motivations and Objectives
The conceptual architecture presented in Chapter 4 proposes an abstract framework
specification of a WSF. The modules, interfaces, parameters and components are

107

designed to be portable across different cloud providers and interoperable to op-
erate with multiple cloud providers at the same time. In order to illustrate and
validate the conceptual architecture, in this chapter a prototypical implementation
of a WSF is explored. The prototype is implemented and deployed to the Google
Cloud Platform (2008), Amazon Web Services (2006) and the Pi-One evaluation
cluster presented in Section 2.8. In order to integrate a web application into a WSF,
the web application needs to be adapted. Consequently, in this chapter a social web
application is designed, implemented and evaluated for the necessary adaptations re-
quired to operate it with a WSF. Cloud provider service charges are typically based
on multiple metrics. One metric is the number of machines that are utilised. In this
thesis, this metric is modelled and evaluated in Chapter 5, where the request flow
optimisation scheme reduces the number of provisioned machines. Another metric
is the duration of time a service is used. In this thesis, this metric is modelled and
evaluated in Chapter 6, where the resource dependency processing algorithms min-
imise the time spent for processing. Further metrics used to charge cloud customers
are the total amount of processing and the storage space occupied by a web service.
Both the amount of processing and the storage space are determined by the resource
dependency graph and corresponding optimisation algorithms. Consequently, in this
chapter a model for both the processing cost and required storage space is developed
and evaluated with the prototypical implementation.

7.3 Prototypical Implementation
In Chapter 4, the conceptual design specifies required modules, interfaces and com-
ponents of a WSF. In order to operate modules and components on multiple cloud
providers, they have to be designed to run on any cloud platform and allow simple
migration between multiple platforms. This opens up research question R7.1: How
can modules and components be designed in a portable and interoperable fashion?
Consequently, this section presents a prototypical implementation of WSF modules
and components operated by multiple cloud providers.

7.3.1 Cloud Providers with Linux Container Support

As presented in Section 3.5, Linux containers enable a portable and efficient de-
ployment of modules and components. A Linux container consists of an operating
system and fully customisable software that runs inside the container. Multiple
containers can be linked with distinct networking interfaces and data can be shared
using volume containers that can serve as data storage.

7.3.1.1 Docker Container Engine

The Linux container implementation used in this thesis is Docker (2013) as it is
supported by all major cloud providers. Generally, a Docker container is described

108

by a Dockerfile. The Dockerfile contains information on how to build the container,
such as:

• The operating system the container should use

• The command to clone the repository with the source code of the application

• Commands that should be run to install application dependencies

• Environment variables in the container

• Ports the container should expose

• Volumes that should be mounted

• The entry point that is run when the container is executed

An exemplary Dockerfile that creates a portable app can look like this:

FROM ubuntu

RUN apt-get update && apt-get install -y go

Install App

RUN mkdir /app

RUN git clone http://github.com/wsf/app /app

WORKDIR /app

RUN go install

Expose Port

EXPOSE 3000

Run App

CMD ["app", "--port=3000"]

With such a Dockerfile, a container engine can build and run independent compon-
ents on various hosting environments. All major cloud providers offer container ser-
vices supporting Docker. In the following sections, a short overview of the Amazon
EC2 Container Service (2014), Google Container Engine (2014) and IBM Containers
for Bluemix (2014) APIs is presented.

7.3.1.2 Amazon Elastic Container Service (ECS)

The Amazon ECS API uses clusters, services and tasks. A cluster is a logical
grouping of machines that can host a service. A service consists of at least one
instance of a task. A task is defined by a task definition. A task definition defines the
container setup such as the used images that are built by the Dockerfile, environment
variables and ports. An exemplary task definition file with two containers is provided
as follows:

109

{

"containerDefinitions": [

{

"name": "worker",

"links": ["queue"],

"image": "worker",

"essential": true,

"portMappings": [{

"containerPort": 80,

"hostPort": 80

}],

"memory": 500,

"cpu": 10

},

{

"environment": [{

"name": "Q_PASSWORD",

"value": "secret"

}],

"name": "queue",

"image": "queue",

"cpu": 10,

"memory": 500,

"essential": true

}

],

"family": "hello_wsf"

}

7.3.1.3 Google Container Engine

The Google Container Engine API uses container clusters, services, jobs and pods.
A container cluster provides machines to host a service or run a job. Services and
jobs combine one up to many pods. A pod defines the container setup such as
the used images, environment variables and ports. An exemplary pod with two
containers is provided as follows:

{

"kind": "Pod",

"apiVersion": "v1",

"metadata": {

"name": "worker",

110

"labels": {

"name": "worker"

},

},

"spec": {

"containers": [

{

"name": "worker",

"image": "worker",

"ports": [{

"containerPort": 80,

}],

"resources": {

"cpu": "10"

"memory": "500"

}

},

{

"name": "queue",

"image": "queue",

"env": [{

"name": "Q_PASSWORD",

"value": "secret"

}],

"resources": {

"cpu": "10"

"memory": "500"

}

}

],

}

}

7.3.1.4 IBM Bluemix Containers

The IBM Bluemix Containers API provides compute nodes, services, container
groups and containers. Compute nodes run services that consist of container groups.
A container group includes one up to many containers that are built from Docker-
files. Notably all presented cloud providers share a common hosting structure where
containers are composed into groups that can be used by services that run on clusters
of machines. Unfortunately, the cloud providers however do not share a common

111

Figure 7.1: Portable and interoperable prototypical implementation of components and
modules.

standard to express this hosting structure. Hence, the provisioning module of a
WSF needs to translate actions for each cloud provider.

7.3.2 Prototype Components

As illustrated in Figure 7.1, the prototypical implementation uses components de-
ployed to the Pi-One cluster, Amazon Web Services (2006) and Google Cloud Plat-
form (2008). At Figure 7.1 (a), the load balancer uses the Elastic Load Balancer
(ELB) SaaS from Amazon Web Services (2006). The ELB API allows a user to
register and remove target components. Additionally, it allows setting different bal-
ancing policies, where for the prototype, a round robin selection of dispatchers is
chosen. The dispatcher is deployed as a container that runs on the Amazon Web
Services (2006) Elastic Container Service (ECS). It is implemented using Go and
divides the read from the processing requests. The read requests are looked up in
the resource database, and the processing requests are put into the queue. The re-
source database uses the Amazon Web Services (2006) Simple Storage Service (S3)
to store and retrieve data. At Figure 7.1 (b), both the queue and the event system
are deployed using Google Cloud Platform (2008) Cloud Pub/Sub (CPS) message
middleware. The Cloud Pub/Sub service allows both push and pull delivery. The
dispatcher pushes requests into a queue where the worker pulls them for processing.
The worker is deployed as a container in the Google Cloud Platform (2008) Con-
tainer Engine. It is implemented using Go and incorporates an application that
is presented in the subsequent section of this chapter. When the worker has fin-
ished processing, it pushes the response to the Cloud Pub/Sub system where the

112

dispatcher pulls it for delivery to the client.

7.3.3 Prototype Modules

All modules of the prototypical implementation are deployed as containers to the
Pi-One cluster. As shown in Figure 7.1 (c), both the provision and metrics module
implement connectors to the Amazon Web Services (2006) Elastic Load Balancer,
Elastic Container Service and Simple Storage Service. Additionally, they implement
connectors to the Google Cloud Platform (2008) Cloud Pub/Sub and Container En-
gine. Both modules implement the corresponding provision and metrics interfaces by
translating abstract actions to cloud provider specific actions. The storage module
is implemented as a simple key-value database using the Redis (2009) data structure
server. It stores component metrics and framework parameters and provides them
to other modules. The watcher module is implemented in Go to frequently request
metrics from the storage module. It implements the component and composition
models to calculate the optimal machine configuration and triggers the actions mod-
ule for provisioning when required. As shown in Figure 7.1 (d), the actions module
is created in Go and implements the action interface by providing available actions
to provision components and deploy applications. It is noted that the resilience and
interface modules are not implemented for the prototype to reduce complexity.

7.4 Web Application Integration
A WSF operates web applications generated with traditional WAFs. In order to
cooperate with a WSF, however, web applications have to be adapted. This opens
up research question R7.2: What needs to be done in order to integrate a traditional
app into a WSF? Consequently, in this section a traditional web application is
developed and integrated into the prototype.

Figure 7.2: Entity relationship model of the LinkR web application.

113

George Mitchell

Jacob Taylor

4 Comments

6 Comments

http://contribution.org

contribution

weather

weather

Tagged: research

Jacob Taylor

Sophie Ross

research contribution

research

4 Comments

6 Comments

4 Comments

Jacob Taylor

Sophie Cox

Benjamin MacCilbridge

User: Sophie Cox

4 Comments

1 Links

4 Tags

2 Comments

research contribution compute

Sophie Cox

Sophie Cox

research

http://weather.org

This is a sample link description. It contains information from
the user that describes the link in further detail.

This is a sample link description. It contains information from
the user that describes the link in further detail.

This is a sample link description. It contains information from
the user that describes the link in further detail.

This is a sample link description.

http://research.org

http://contribution.org

Link: http://contribution.org

research contribution

This is a sample link description. It contains information from
the user that describes the link in further detail.

http://contribution.org

This is a sample comment from a user.

This is a sample comment from a user.

This is a sample comment from a user.

This is a sample comment from a user.

This is a sample link from a user.
http://link.org

Figure 7.3: Screenshots from four LinkR web application service views with annotated
dependencies.

7.4.1 LinkR Web Application

The showcase web application developed for the prototype is named LinkR. It is
designed to demonstrate an application with two major functionalities: social con-
nections between resources and organisation and search of content. The social con-
nections property leads to a high content spread across multiple resources. The
organisational properties on the other hand categorises and bundles resources into
other resources. LinkR resembles a social web application that allows sharing links
with other users. For the social property, users can comment on links and have a
profile page that lists all of their contributions. For the organisational property,
links can be tagged and therefore are searchable based on their tags. A link can
have many comments from multiple users and a user can have tags through her
links. Figure 7.2 shows the entity relationship model of the web application with
the entities link, comment, user and tag. The web application is implemented using
Go. It serves CSS, image and HTML files dynamically rendered for each requests
to follow the traditional scheme of web applications. Figure 7.3 shows screenshots
from four of five application views available, where the view that displays a single

114

comment only is omitted due to space limitations. The dynamic parts in the URIs
are denoted by the link id :lid, the user id :uid and the tag :tag. The omitted com-
ment view can be accessed through the /links/:lid/comments/:cid URI from each
link view.

7.4.2 Adaptations for Integration into a WSF

As presented, the LinkR web application can be deployed in the traditional scheme
(Chapter 5). Often, the traditional scheme incorporates a partial caching solution.
For the partial caching solution to work, a caching policy has to be implemented
that pushes resources to the cache and invalidates them when the data behind the
resources change. In order to implement the invalidations, typically manual triggers
that observe data are added. With complex data structures, it can become hard
to manually implement the invalidations correctly. In order to integrate a web
application into a WSF, three automatable adaptation steps are required:

1. Analysis of the service structure with automatic dependency extraction

2. Injection of dynamic dependency declarations and resource push

3. Resource Index generation for initial resource database fill up

Each step is presented in the subsequent sections.

Table 7.1: LinkR web application routes and dependencies.

Read Routes Dependencies
GET /
GET /links/:lid
GET /links/:lid/comments/:cid
GET /users/:uid
GET /tags/:tag
Processing Routes Dependencies
POST /links GET /

GET /links/:lid
GET /users/:uid
GET /tags/:tag

POST /links/:lid/comments GET /
GET /links/:lid/comments/:cid
GET /links/:lid,
GET /users/:uid

DELETE /links/:lid GET /
GET /users/:uid

DELETE /links/:lid/comments/:cid GET /
GET /links/:lid
GET /users/:uid

115

Figure 7.4: Service structure graph for the LinkR web application with resource nodes
and dependency edges.

7.4.3 Service Structure Graph Analysis

As a first step, the service structure of the LinkR application is analysed for its
resources and dependencies. In Section 6.6, service structure graphs are extracted
from six social network services based on their APIs. The service structure graph
is created by inspecting all available application resources and their dependencies
on other resources. A dependency between two resources exists, if the processing of
one resource changes the output of the other resource. A route uniquely identifies a
resource and is defined by the HTTP method and a path. Each route can have a list
of dependencies that needs to be processed when the route is processed. Table 7.1
shows the routes and dependencies for the LinkR web application. The dependencies
can be deduced from the entity relationship model in Figure 7.2 and the screens in
Figure 7.3. A link is listed in the index page and a custom link page. Additionally,
it is represented in the user page and all tag pages. A comment is listed in the
index page, the custom link page and a custom comment page. Additionally, a user
page lists all comments the user created. By following all dependencies, a service
structure graph such as that shown in Figure 7.4 can be generated that visualises
all routes and dependencies. For bigger applications, the service structure graph
can be extracted automatically from the data and render logic of the application.
The view layer of the application knows exactly which data it accesses. From that
information, other views that use the same data can be found as dependencies.

7.4.4 Dependency Graph Injection and Resource Push

The dependency graph can be extracted from the service structure graph. Static
dependencies are dependencies where there is no variable part in the request path.
For LinkR the only static dependency is the index page GET /. In contrast, dynamic
dependencies are dependencies with variable parts in the request path. For LinkR
all dependencies except GET / are dynamic. During runtime, the worker needs to
resolve all dependencies for a request. To resolve the dynamic dependencies, the
worker needs to know with which variables the dependencies need to be expanded.
For example the POST /links route has a dynamic dependency on GET /tags/:tag.
In order to update the correct tag pages, the worker needs to know which tags
the posted link contains. This information needs to be injected into the LinkR

116

web application. The following pseudocode illustrates the POST /links action with
dynamic dependency expansion:

1: params← request with link parameters in body
2: link ← createLink(params)

3: worker.addDependency(”GET/links/” + link.id)

4: worker.addDependency(”GET/user/” + link.user.id)

5: for all tag t in link.tags do
6: worker.addDependency(”GET/tag/” + t)

7: end for
8: return [201, renderLink(link)]

On the first two lines the link is created from the request params and stored to
the LinkR database. Lines 3-4 expand dependencies to the link itself and the user
that created the link. On lines 5-6, the tag dependency is expanded for every tag.
The dependency to GET / is stored as static dependency and therefore must not
be expanded by the application. Finally, on line 8 the response is rendered and
send with the HTTP status code 201 (created). In order to update the resources
in the database, the updates need to be pushed when they are finished rendering.
Typically, there is a one-to-one mapping of read routes and resource database keys,
and thus the resource GET /links/abc is stored in the resource database under key
/links/abc. This allows an automatic mapping of all read routes to database keys
and therefore must not be integrated into the LinkR web application.

7.4.5 Resource Index Generation

Finally, in order to fill the resource database on startup, all requestable resources
need to be pushed to the database once. This can be easily done by having the worker
to request all available read routes that can be derived from the entities. The follow-
ing pseudocode illustrates this initial indexing process:

1: index← [] start with an empty array
2: index.add(”GET/”)

3: for all link l in database.links do
4: index.add(”GET/links/” + l.id)

5: for all comment c in l.comments do
6: index.add(”GET/links/” + l.id+ ”/comments/” + c.id)

7: end for
8: end for
9: for all user u in database.users do

10: index.add(”GET/users/” + u.id)

11: end for
12: for all tag t in database.tags do
13: index.add(”GET/tags/” + t)

117

14: end for
15: return index

On the first two lines an empty index is generated and the static routes are added.
Each read route is then expanded with the entities from the database and added to
the index on lines 3-14. The index returned on line 15 is then put into the queue
component where multiple workers can fill up the resource database. This does not
require any extra implementation as the processing subsystem processes requests
from the queue by default.

7.5 Processing Cost and Storage Space Modelling
As mentioned in the introduction of this chapter, cloud providers charge customers
based on the number of machines, usage duration, processing cost and storage space.
The models in Chapter 5 and Chapter 6 consider both the number of machines
and usage duration of a dependency processing approach. This opens up research
question R7.3: How well can the processing cost and storage space required for
dependency processing be modelled? Consequently, in the subsequent section models
for the processing cost and required storage space for the traditional and dependency
processing approach are developed.

7.5.1 Processing Cost

The processing of a single request involves work by the CPU, system memory and
input/output system. For cloud services, however, these metrics are often abstrac-
ted away from the user. Thus, the processing cost is abstractly expressed as the
number of dependencies that need to be processed for each incoming request. For
the traditional approach TP, each incoming request needs to be processed that is
not in the cache. Thus it can be modelled as:

PCTP = 1 · (1−HMR) (7.1)

For the dependency processing approach, only processing requests need to be pro-
cessed. To determine the number of updates, the mean number of dependencies
needs to be calculated. This can be done with the help of the service structure
graph where the degree for each processing node is counted. Dynamic dependencies
are counted with their mean quantity of the expanded form. For example in the
LinkR web application, a link has an average of 3 tags, and thus 3 needs to be added
to the degree instead of 1. With the mean dependency degree ddeg the processing
cost can be modelled as:

PCDP = (1−RPR) · (1 + ddeg) (7.2)

118

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
HMR = 0.0

HMR = 0.25

HMR = 0.5

HMR = 0.75

HMR = 0.9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
DP: ddeg=0, HMR = 0

DP: ddeg=1, HMR = 0

DP: ddeg=2, HMR = 0

DP: ddeg=3, HMR = 0

TP

Read/Processing Ratio

Break-Even Point of Read/Processing Ratio

M
ea

n
Pr

oc
es

si
ng

 C
os

t
D

ep
en

de
nc

y
D

eg
re

e

Figure 7.5: Mean processing cost and break-even points for multiple hit/miss ratios.

7.5.2 Break-Even Point for Processing Cost

From Equation (7.1) and Equation (7.2) the break-even point where both approaches
have equal processing cost can be calculated. This can be done by equalising PCTP

with PCDP and solving it for RPR as follows:

RPRBEP = (PCTP = PCDP), solve for RPR

=
HMR + ddeg

ddeg + 1
(7.3)

Figure 7.5 shows both the mean processing cost for the TP and the DP approach
in the lower subgraph. The corresponding break-even points are where the TP and
DP lines are crossing. At these crossings, both approaches have the same processing
cost. The upper subgraph in Figure 7.5 shows theRPRBEP s for multiple dependency
degrees ddeg.

7.5.3 Storage Space

The calculation of the required storage space is based on the total number and
resource size of each entity. From the entity model in Figure 7.2, the following set
of entities E is extracted and assigned to the following variables:

E : {Link → l, Tag → t, User → u,Comment→ c} (7.4)

119

For each entity in the set, the quantity of existing instances is expressed as qx:

Q : {qx | x ∈ E} (7.5)

A ql = 1000 and qu = 300 means that an application has 1000 links and 300 users.
Each entity is typically expressed as a fragment of similar contents. As presented
in Figure 7.3, a user is described using markup language for his name, where a
comment contains a username, date and the comment text. A link contains the
URI, the username and some description text. For modelling, each of the fragment
sizes is measured and extracted as fx:

F : {fx | x ∈ E} (7.6)

A fl = 1000 and fu = 400 means that the fragment size for a link in a resource is 1000
bytes and the fragment size of a user is 400 bytes. In addition to the fragments,
a base size b is defined that measures the size of a resource containing only the
skeleton of the resource, such as the HTML headers. The total size needed to store
all resources can then be calculated by defining a system of equations for all read
resources. The read resources can be extracted from the service structure graph as
R:

R : {

/→ ls,

/links/ : id→ l,

/tags/ : id→ t,

/users/ : id→ u,

/links/ : id/comments/ : id→ c

} (7.7)

For each resource in R, the mean resource size sx can now be modelled with respect
to the contents of each resource:

sls = b+ ql · fl (7.8)

sl = b+ fl + (
qc
ql
· fc) (7.9)

st = b+ (
ql
qt
· fl) (7.10)

su = b+ (
ql
qu
· fl) + (

qt
qu
· ft) + (

qc
qu
· fc) (7.11)

sc = b+ qc · fc (7.12)

120

The modelled size equations count the number of fragments that appear in each
resource. For example in Equation (7.11), the size of the user resource is calculated.
The variable b represents the basic size of the resource. To that, the link fragment
size fl multiplied by the mean number of links ql per user qu is added. This step
is repeated for the tags per user and comments per user. Finally, the storage size
S can be calculated by summing up all mean resource sizes sx multiplied by the
quantity of the resource qx:

S =
∑
x∈R

qx · sx (7.13)

The size S can change over time as it is based on the quantities and fragment size
of resources. During development of a web application, it can be helpful to track
the mean resource sizes when migrating an application. The size model enables to
continuously calculate the total storage space impact of fragment size changes in a
single resource.

7.6 Processing Cost and Storage Space Evaluation
The analytical modelling of the processing cost opens up research question R7.4:
How is the performance trade-off between processing cost and processing duration
when using a dependency processing approach? Consequently, in this section the
prototypical implementation is empirically evaluated to measure the performance
differences and find the fit of the models developed in the previous section.

7.6.1 Evaluation Data

For the evaluation, application resource and traffic data are generated. The key fig-
ures for the generated evaluation data are shown in Table 7.2. For the application,
a total of 600,000 requestable resources are generated and distributed according to
the listed quantities. The fragment sizes are extracted from the delivered HTML
markup shown in Figure 7.3. A total of 9 traffic traces with 1000 requests per
trace are generated where each trace has a mean read/processing ratio of 0.1 up
to 0.9. Each read request in the trace randomly selects one of the 5 read routes
shown in Table 7.1. Each processing request randomly selects one of the 4 pro-
cessing routes shown in Table 7.1. The processing actions POST /links and POST
/links/:lid/comments create new links and comments that are processed by and
added to the system. The processing actions DELETE /links/:lid and DELETE
/links/:lid/comments/:cid select a random link and delete it or one comment of it.

7.6.2 Results

All traffic traces are run on the prototypical implementation where between all runs
the application’s resources data are reset by deleting the application and resource

121

Table 7.2: Key figures of the generated application resources and traffic traces to evalu-
ate the prototypical implementation.

Resource Based Parameter Value
Link Quantity ql 100,000

Comment Quantity qc 500,000
User Quantity qu 50,000
Tag Quantity qt 10,000

Total Resources |R| 660,000
Mean Base Fragment Size b 1.2 kB
Mean Link Fragment Size fl 0.9 kB

Mean Comment Fragment Size fc 0.3 kB
Mean Tag Fragment Size ft 0.05 kB
Mean User Fragment Size fu 0.25 kB

Traffic Based Parameter Value
Number of Traces |T | 9

Number of Requests per Trace N 1,000
Read/Processing Ratios RPRs 0.1-0.9

Mean Dependency Degree ddeg 1.486

databases. For each request, the amount of required processing, the processing dur-
ation and the current storage space are recorded. Figure 7.6 presents a series of
graphs for each traffic trace with increasing RPRs. The processing cost subgraphs
present the results for the traditional approach and the dependency processing ap-
proach along with the modelled results. It is noticed that starting from a RPR = 0.1

up to a RPR ≈ 0.6, the traditional approach has lower processing cost than the
dependency processing approach. This stems from the fact that with a low portion
of read requests, a high number of dependencies needs to be processed. Based on
the processing cost break-even model, the exact break-even point where both ap-
proaches exhibit equal processing cost is RPRBEP = 0.597 with a ddeg = 1.486.
The second subgraph shows that all traces exhibit a faster processing performance
for the full spectrum of RPRs. The third subgraph shows the storage space required
throughout the evaluation with the corresponding storage space model results. The
storage space randomly increases and decreases based on the processing actions that
add or remove content. In order to determine the model fit, the results are calcu-
lated with the processing cost and storage space models developed in the previous
section. For all traces, the combined root-mean-square error for the processing cost
is RMSE = 18.24 and the storage size is RMSE = 0.1. Thus, the processing
cost model fit is Fit = 0.97 and the storage size fit is Fit = 0.99. This supports
the validity of both models. Overall, Figure 7.6 shows the trade-offs between re-
duced processing durations and increased processing cost and storage space require-
ments. Figure 7.7 presents an overview of all trade-offs in one figure. Starting at an
RPR = 0.1, the dependency processing approach needs 60% more processing than
the traditional approach, however, is 10% faster. At Figure 7.7 (a), both approaches

122

0

800

1600

2400 Processing Cost
RPR=0.1

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.02

240.03

240.04

240.05
Storage Space in MB

Data

Model

0

800

1600

2400 Processing Cost
RPR=0.2

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.025

240.040

240.055 Storage Space in MB

Data

Model

0

500

1000

1500 Processing Cost
RPR=0.3

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.00

240.02

240.04 Storage Space in MB

Data

Model

0

400

800

1200
Processing Cost

RPR=0.4

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.02

240.03

240.04

240.05 Storage Space in MB

Data

Model

0

400

800

1200 Processing Cost
RPR=0.5

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.010

240.016

240.022 Storage Space in MB

Data

Model

0

300

600

900
Processing Cost

RPR=0.6

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.024

240.032

240.040
Storage Space in MB

Data

Model

0

250

500

750
Processing Cost

RPR=0.7

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

239.99

240.00

240.01

240.02 Storage Space in MB

Data

Model

0

250

500

750
Processing Cost

RPR=0.8

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.02

240.03

240.04 Storage Space in MB

Data

Model

0

250

500

750
Processing Cost

RPR=0.9

TP

DP

Model

0

40

80

120
Durations in s

TP

DP

0 200 400 600 800 1000
Requests

240.016

240.019

240.022
Storage Space in MB

Data

Model

Figure 7.6: Trade-off graphs for a series of read/processing ratios (lower is better).

exhibit the same processing cost when the RPR = 0.6, although the dependency
processing approach is 60% faster. For a RPR = 0.9, the dependency processing
approach both has 35% lower processing cost and is 80% faster than the traditional
processing approach.

7.7 Discussion
In this chapter, a cloud portable and interoperable prototype implementation of a
WSF, an analytical model to determine the processing cost and storage space and an
evaluation of the model have been presented. With respect to R7.1 How can modules
and components be designed in a portable and interoperable fashion?, it has been
shown how components can be operated and moved between multiple cloud providers
by utilising Linux containers and provider specific SaaSs. With respect to R7.2

123

Read/Processing Ratio

Figure 7.7: Normalised processing cost, duration and requests/s for the evaluated pro-
totype.

What needs to be done in order to integrate a traditional app into a WSF?, three
steps have been presented where in the first step the service structure was analysed to
extract the dependencies, in the second step the dynamic dependencies were injected
into the web application, and in the third step the resource index was created for the
initial resource database fill up. With respect to R7.3 How well can the processing
cost and storage space required for dependency processing be modelled?, a processing
cost and storage space model based on mean dependency degrees, entity quantities
and resource fragment sizes has been developed. Both models fit the evaluation data
by 97% and 99% for the processing cost and storage space models. With respect
to R7.4 How is the performance trade-off between processing cost and processing
duration when using a dependency processing approach?, it has been presented that
in optimal cases the dependency processing approach both has 35% lower processing
cost while being 80% faster than the traditional processing approach. When both
approaches exhibit equal processing cost, the proposed dependency approach was
60% faster than the traditional processing approach. A high RPR is better suited
for the proposed scheme and typical for consume-oriented applications where only a
small fraction of users add or change content. Typical applications for this scenario
are video on-demand platforms, Wikis and e-commerce platforms. For low RPRs
the proposed scheme can require a higher number of processing than a traditional
scheme. Low RPRs are typical for produce-oriented applications such as online
messaging platforms where not all messages are read. In general, it must be noted
that information typically is processed to be consumed, as otherwise the information
remains unused.

7.8 Summary
In conclusion, it has been shown that the overall performance of a web application
integrated into a WSF is a trade-off among optimised processing cost, processing
duration and storage space. Figure 7.8 shows a SPD (read speedy) performance
optimisation triangle in the style of the CAP theorem (Gilbert and Lynch, 2002).
The triangle illustrates how a system can only be optimised for two out of three
goals simultaneously. A traditional web application with vertical scaling typically

124

Figure 7.8: Performance optimsation triangle with low processing cost, low storage
space and low processing duration.

requires low storage space S as it caches only parts of all resources. It further can
achieve low processing durations D by scaling the system vertically, e.g. by adding a
faster CPU or better network. However, it can not exhibit low processing cost P as
vertical scaling is more expensive than horizontal scaling and cache misses need to
be processed. A traditional web application with horizontal scaling also requires low
storage space S due to partial caching. It further can achieve low processing cost
P by employing multiple, inexpensive machines with low hardware specifications.
However, with these low hardware specifications it can not achieve low processing
durations D, with the same number of machines than SD uses. A web application
using resource dependency processing can provide low processing durations D as all
requestable resources are preprocessed and immediately available for delivery. It
further can achieve low processing cost P as it processes only requests that require
processing and does not evict and reprocess resources to save storage space. Con-
sequently, it can not achieve the goal for low storage space S. To fully evaluate all
approaches, the optimisation goals have to be weighted by the cost that occurs when
violating a goal. Both the storage space S and processing cost P are based on cloud
provider pricing. The low processing duration goal D is based on user experience as
it directly influences the response times for customer facing requests. For illustra-
tion purposes it is assumed that 1000 requests should be processed where the RPR
of the requests is 0.8. Further, a large CPU is given that is able to process 1000
requests/s for 20$, a small CPU is given that is able to process 100 requests/s for 2$
and the storage of 100 resources is assumed to cost 1$. For the traditional approach
with vertical scaling this means that 200 resources are stored for 2$, 800 resources
are processed with 1 large CPU for 20$ in 0.8 seconds of time which totals to 22$.
Further, for the traditional approach with horizontal scaling this means that 200

125

resources are stored for 2$, 800 requests are processed with 8 small CPUs for 16$ in
1 second of time which totals to 18$. Finally, for the resource dependency approach
this means that 1000 resources are stored for 10$, 200 resources are processed with 2
small CPUs for 4$ in 1 second of time which totals to 14$. Consequently, the triangle
shows the trade-offs between S, P and D. Further, it has been shown that the use
of a common Linux container format enables efficient portability and interoperab-
ility of components between cloud providers. When integrating applications into a
WSF, a detailed knowledge of the entity relations and resource structure is needed.
However, with the help of automated application analysis tools, future applications
can be integrated automatically during the development process.

126

8. Conclusions and Future Work

8.1 Overview
This thesis has examined a novel class of frameworks that can take over the complex
task of automatic scaling in an optimised fashion. The work has been split into four
major research objectives that all have been completed successfully and are further
described in the section of proposed solutions. The conclusions of the work are based
on the completed research objectives and are presented in the major findings and
contributions to technical and methodological knowledge sections in a generalised
form. Finally, the limitations of this study are presented, where the future work
section gives an outlook on how to overcome those limitations and concludes the
thesis.

8.2 Proposed Solutions
The research aim and objectives defined in Chapter 1 have been met by proposing
and investigating novel solutions within the problem space. The solutions to the
four objectives can be summarised as follows:

• O1: (To) separate the concerns of application logic and scaling logic: A con-
ceptual architecture design including required modules, interfaces, parameters
and components valid for all implementations of Web Scaling Frameworks
(WSFs) has been presented. The major identified design goal was to create
an architecture that enables building maintainable, automatable, scalable, re-
silient, portable and interoperable implementations of WSFs. Further, the
provider adapter cloud pattern, the managed configuration cloud pattern, the
elastic manager cloud pattern, the command query responsibility segregation
and Flux pattern, the watchdog pattern and the microservice architecture
pattern were applied to the conceptual architecture. The architecture was
designed to use a storage module, a metrics module, a watcher module, a re-
silience module, an actions module, a provision module, an interface module
and a worker module in order to separate the concerns of implementation.
Parameters were divided into component parameters, system parameters and
traffic parameters to configure and manage scaling. Additionally, a minimal
viable set of interfaces has been presented that includes component interfaces,
framework interfaces and application interfaces.

• O2: (To) distribute work to multiple components and fully benefit from a novel
caching approach: A novel request flow scheme has been designed and imple-

127

mented. The proposed Permanent Resource Storage and Management pattern
divides resource models into individually scalable, manageable and decoupled
read and processing subsystem that guarantees constant response times for
all read requests, releases applications from avoidable load and ensures that
changes are processed only exactly once for the whole system. An implement-
ation of the Permanent Resource Storage and Management (PRSM) pattern
was presented that provides an efficient and scalable composition of compon-
ents. Additionally, a mechanism to synchronously and asynchronously process
dependencies in order to enforce eventual or strong consistency of resources
was proposed. To the minimum viable interfaces, a resource interface was
presented as extension to the worker interface. The resource interface provides
actions to manage the storage and meta information such as dependencies of re-
sources. Component and composition parameters and models were developed
that allow the analytical evaluation of request flow and total machines perform-
ance. Additionally, models to compare the performance between a traditional
scheme and the proposed scheme were presented. Metrics and models were
developed that are able to measure and optimise the performance of compon-
ents by operating them in the optimal concurrency range. Results showed that
all evaluated real-world applications need significantly fewer machines (63%,
32%, 92%) with the proposed scheme than the traditional composition and
flow scheme. Additionally, the results have shown that the average time avail-
able to process dependencies was positive for all applications with 2.69, 1.19
and 26.04 seconds. The component, composition and mean prediction fit for
all applications further support the proposed models.

• O3: (To) optimise the processing performance of the novel caching approach:
It has been shown that resource dependencies can be stored as directed acyc-
lic graphs, where vertices represent resources and edges dependencies. Fur-
ther, the dependency depth, dependency degree, cluster count, cluster size
and sparsity were identified as the most influential graph measures. With
respect to optimisation algorithms, it has been found that applying shortest-
path algorithms for dependency processing is not suitable as the processing
order needs to be maintained. Hence a longest-path algorithm combining a
topological sort with dynamic programming which determines the processing
order in linear time was developed. The dependency depth and cluster size
were found to have a linear correlation with the processing duration, where
the accuracy of regressions based on both measures depends on the sparsity
of the graph. The generation of random dependency graphs was based on ser-
vice structures where the parameters were extracted from six real-world social
applications and a fuzzy algorithm with random parameters. The processing
duration was found to be adequately modelled based on the cluster size and

128

the dependency depth. This allowed replacing the constant resource depend-
ency processing delay from Chapter 5 with an exact model. The cluster size
based model has an overall model fit of 96% and is inexpensive to compute,
where the dependency depth based model has a model fit of 98%, thus being
more accurate but also more expensive to determine. The duration delta and
relative performance improvement models enable comparing the performance
of a traditional processing approach versus a resource dependency approach.
Finally, the evaluation of 2000 web services with 850 thousand resources and
over 6 million requests has shown the resource dependency processing approach
to be up to a factor of two faster than a traditional processing approach.

• O4: (To) enable multiple cloud provider systems and predict resource cost: It
has been shown how components can be operated and moved across multiple
cloud providers by utilising Linux containers and provider specific Software
as a Services (SaaSs). Three steps to integrate a traditional app into a WSF
were presented where in the first step the service structure was analysed to
extract the dependencies, in the second step the dynamic dependencies were
injected into the web application, and in the third step the resource index
was created for the initial resource database fill up. A processing cost and
storage space model based on mean dependency degrees, entity quantities and
resource fragment sizes was developed. Both models fit the evaluation data
by 97% and 99% for the processing cost and storage space models. It was
found that in optimal cases the dependency processing approach both has 35%
lower processing cost while being 80% faster than the traditional processing
approach. When both approaches exhibit equal processing cost, the proposed
dependency approach was 60% faster than the traditional processing approach.

8.3 Major Findings
In recent relevant work, no platform, framework or class of frameworks exists that
can take over the complex task of automatic scaling in an optimised fashion. Current
solutions propose work that improve single components with optimised algorithms
and data structures or propose the set-up and use of individual hosting solutions.
For the scaling of web services, this means that for each application a customised
hosting system needs to be set up from scratch, or with the help of services from a
cloud provider. The proposed composition of multiple cloud architecture patterns
into a reusable framework reduces hosting complexity and improves the overall ser-
vice reliability. The major design goal for WSFs is to create an architecture that
enables building maintainable, automatable, scalable, resilient, portable and inter-
operable implementations of WSFs. While single cloud application patterns exist to
implement these goals, there is no class of frameworks that compose this patterns
into concrete and usable solutions to scale web services. For the scaling of web

129

services, this means that for each application individual cloud application patterns
have to be evaluated and implemented. This increases the required time to develop
scalable web services enormously while reducing the time available to implement
the application logic. A permanent storage and update mechanism with an optim-
ised routing scheme in WSFs allows a fine-grained scalability of read and processing
subsystems and thereby helps to reduce the total amount of machines required to
satisfy a targeted load. In current solutions, all requests flow through the web ap-
plication that queries a cache to find out if a request needs to be processed or the
response can be taken from cache. For the scaling of web services, this means that
the finest granularity available for scaling is the entire application, where for cached
responses only the cache is required to respond to a request. Consequently, to adapt
to traffic that mainly reads resources, the entire application has to be scaled, where
scaling the cache subsystem would be sufficient. This results in an unnecessary
waste of resources which can be reduced by creating a system with finer-grained
scalability, such as the proposed WSF. An explicit definition and management of
resource dependencies can remove a heuristic cache invalidation approach, leading
to fewer total processings and a lower processing duration. In current solutions,
cache eviction is based on heuristics, such as access frequency, patterns or timeouts.
This leads to both unpredictable response times when a cache miss occurs and mul-
tiple processings of the same resource. For the scaling of web services, the explicit
definition and processing of resource dependencies enables decoupling the resource
access from the resource update and management and thereby allows an individual
scaling of both subsystems. Further, knowledge of the dependency structure allows
predicting update times that can be used to scale the system more accurately than
a heuristic cache eviction. The utilisation and performance prediction of services
from multiple cloud providers enables building resilient, flexible and cost-effective
systems. For the scaling of web services, this means that a prediction of required
storage space and number of processings can be used to base scaling decisions on
calculated costs of different service providers. Identifying accurate measurements
of web service properties, such as content distributions and sizes, are important to
effectively manage and predict resource requirements prior to implementation.

8.4 Contributions to Knowledge
The work in this thesis largely contributes to the generation of a new level of ab-
straction for cloud deployment and hosting. With the adoption of the proposed
class of frameworks, a variety of WSF implementations can contribute to enabling
future applications to focus on enhanced application logic as opposed to deploying
and hosting logic. This enhanced focus in turn can be used to create a series of new
generation smart services helping to unravel the true power of cloud computing.
The major abstractions of the proposed WSF are the generalisation of the manage-

130

ment and composition of service components and the optimisation of request and
processing performance. The generalisation of the management and composition of
service components enables creating interoperable, mathematically predictable and
optimised compositions that can be reused for various web services. The presented
component normalisation with delays over different hardware and implementations
contributes to methodological knowledge, where future modelling can be based on
the versatile definition of delays as presented by this work. Further, the division of
the data flow system into multiple, decoupled subsystems as presented in this work,
enables a versatile and fine-grained scalability of individual subsystems and thereby
contributes to technical knowledge. The generalisation of the performance optim-
isation through detailed analysis of service data structures enables creating reusable
performance optimisation models that can be developed and applied to web ser-
vices in an optimised fashion. The analysis, modelling and generation of evaluation
data based on real world Application Programming Interfaces (APIs) have showed
that if a direct evaluation approach is not possible, the indirect can lead to usable
data, which contributes to methodological knowledge. Further, by understanding
the inner relationships and data structures of an application in detail, heuristic op-
timisations can be replaced by more accurate optimisations, which contributes to
technical knowledge. To sum up, the benefits that are introduced by the new level of
abstraction as presented in this work, are an increased reusability of hosting and de-
ployment logic, which reflects in an enhanced reliability through community tested
software, and the reduction of the work needed to implement scalable web services.

8.5 Limitations
This study is subject to the following limitations that can be overcome by future
work presented in the next section. Due to budget limitations, all evaluations were
run with a maximum of 42 machines, where large scale web applications are known
to use hundreds of machines. This limits the scope of the evaluations, where fu-
ture work can further validate the models with more machines. Further, due to
limitations of project time, the evaluations were not carried out on full production
web services over a long period of time. This limits the scope of the evaluations
to the utilised traffic traces and generated application resources. These, however,
were chosen to reflect a large spectrum of applications with versatile properties.
The interaction with a service that uses resource dependency processing changes
the dependency graph during runtime. In this work, after each change the complete
forest of processing trees is recalculated as currently there are no online algorithms
to calculate incremental changes only. Consequently, the evaluation results are lim-
ited in processing speed due to the complete recalculation of the optimal processing
trees. Further, in this work a resource can be updated by the resource dependency
processing algorithm at any point in time. This can lead to multiple subsequent up-

131

dates of a key that are overwritten in near future. Consequently, the modelling and
evaluation results include unnecessary updates not visible to a user, which could be
eliminated with future work. In Chapter 2 it has been found that web applications
have an optimal concurrency range depending on software and hardware, where
the throughput is at its maximum. This throughput maximum is not utilised by
the algorithms presented in this work. Consequently, the results are limited to the
average throughput which could be improved by future work. Finally, the results
in this work expect an application to be either completely operated with a tradi-
tional request flow scheme or the novel proposed request flow scheme. Consequently,
the modelling and evaluations do not include a dynamic approach that can switch
between both approaches.

8.6 Future Work
The proposed optimisation schemes are open to further research. The following is a
non-comprehensive list of potential future work with a focus on further improving
the novel request routing scheme, resource dependency processing and component
orchestration of the proposed solutions:

• With algorithms exhibiting incremental graph updates online, the manage-
ment work involved when a resource changes its dependencies could be reduced
significantly. This would lead to speed-ups in the worker ultimately reflecting
in a higher component throughput.

• Restrict the number of resource dependency updates to discrete time slots.
With an update rate limit of one per second, this could reduce the number
of updates during a five second period to a maximum of five. It is expected
that this optimisation reduces the volume of total processing massively, while
having a minor influence on content propagation speed.

• With the knowledge of the number of updates including dependencies, al-
gorithms can be developed that operate application components only within
their optimal concurrency range. Due to workers pulling requests out of the
queue, the load is expected to be distributed in a further optimised fashion
compared with a request push approach that is used for traditional applica-
tions. This is expected to significantly increase the throughput of the novel
routing scheme.

• The results from all models and evaluations in this work have shown that
for low read/processing ratios a traditional processing approach can achieve
superior performance compared with dependency processing. The design of a
hybrid system able to switch between both processing modes could increase
the field of application to applications with highly dynamic read/processing
ratios while benefiting from the best of both approaches.

132

• In the current conceptual architecture, WSFs have to be configured to use com-
ponents from a selection of cloud providers. The development of automated
component/cloud provider selection algorithms could reduce the cost by im-
plementing time-based price bidding functionalities and selecting the optimal
workload/component composition and orchestration.

• Developer assistive systems can be designed to help developing application
structures optimally suited for dependency processing. Assistive systems point-
ing out critical paths with high dependency depths are expected to reduce
application complexity ultimately leading to fewer, thus faster updates. By
analysing existing application structures and extracting dependency graphs,
assistive systems could additionally reduce the time needed to adopt the op-
timisation schemes proposed in this thesis.

133

List of References

Abrishami, S., M. Naghibzadeh and D.H.J. Epema (2012). ‘Cost-Driven Scheduling
of Grid Workflows Using Partial Critical Paths’. In: IEEE Transactions on Parallel
and Distributed Systems 23.8, pp. 1400–1414.

Addo, I.D., Duc Do, Rong Ge and S.I. Ahamed (2015). ‘A Reference Architecture
for Social Media Intelligence Applications in the Cloud’. In: 2015 IEEE 39th Annual
Computer Software and Applications Conference (COMPSAC). Vol. 2, pp. 906–913.

Ahn, Jaesuk, Eui-Jik Kim, Bokuk Seo, Ki-Young Lee and Eunju Kim (2015). ‘Open
Cloud Architecture for Public Sector: Requirements and Architecture’. In: 2015
International Conference on Platform Technology and Service (PlatCon), pp. 43–
44.

Ajwani, Deepak and Tobias Friedrich (2010). ‘Average-case analysis of incremental
topological ordering’. In: Discrete Applied Mathematics 158.4, pp. 240–250.

Amazon CloudFormation (2011). [Online] Available: http://aws.amazon.com/
cloudformation [Accessed 1st Apr. 2016].

Amazon EC2 Container Service (2014). [Online] Available: https://aws.amazon.
com/ecs [Accessed 1st Apr. 2016].

Amazon Kinesis Streams (2014). [Online] Available: https://aws.amazon.com/
kinesis [Accessed 1st Apr. 2016].

Amazon Lambda (2014). [Online] Available: https://aws.amazon.com/lambda
[Accessed 1st Apr. 2016].

Amazon Web Services (2006). [Online] Available: https://aws.amazon.com [Ac-
cessed 1st Apr. 2016].

Andrikopoulos, Vasilios, Santiago Gómez Sáez, Frank Leymann and Johannes Wet-
tinger (2014). ‘Optimal Distribution of Applications in the Cloud’. In: Advanced In-
formation Systems Engineering. Vol. 8484. Springer International Publishing, pp. 75–
90.

Apache Hadoop YARN (2011). [Online] Available: http://hadoop.apache.org
[Accessed 1st Apr. 2016].

Apache Kafka (2012). [Online] Available: http://kafka.apache.org [Accessed 1st
Apr. 2016].

134

http://aws.amazon.com/cloudformation
http://aws.amazon.com/cloudformation
https://aws.amazon.com/ecs
https://aws.amazon.com/ecs
https://aws.amazon.com/kinesis
https://aws.amazon.com/kinesis
https://aws.amazon.com/lambda
https://aws.amazon.com
http://hadoop.apache.org
http://kafka.apache.org

Apache Mesos (2012). [Online] Available: http://mesos.apache.org [Accessed 1st
Apr. 2016].

Apache Samza (2012). [Online] Available: http://samza.apache.org [Accessed 1st
Apr. 2016].

Apache Spark (2014). [Online] Available: http://spark.apache.org [Accessed 1st
Apr. 2016].

Apache Storm (2015). [Online] Available: http://storm.apache.org [Accessed 1st
Apr. 2016].

Bangar, P. and K.N. Singh (2015). ‘Investigation and performance improvement of
web cache recommender system’. In: Proceedings IEEE International Conference on
Future Trends on Computing Analytics (ABLAZE15), pp. 585–589.

Batarfi, Omar, Radwa El Shawi, Ayman G. Fayoumi, Reza Nouri, Seyed-Mehdi-Reza
Beheshti, Ahmed Barnawi and Sherif Sakr (2015). ‘Large scale graph processing
systems: survey and an experimental evaluation’. In: Springer Cluster Computing
18.3, pp. 1189–1213.

Bellman, Richard (1954). ‘The Theory of Dynamic Programming’. In: RAND Corp,
Santa Monica.

Binz, Tobias, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak and Sebastian Wagner (2013). ‘OpenTOSCA – A Runtime for
TOSCA-Based Cloud Applications’. In: Service-Oriented Computing. Vol. 8274.
Springer Berlin Heidelberg, pp. 692–695.

Binz, Tobias, Uwe Breitenbücher, Oliver Kopp and Frank Leymann (2014). ‘TO-
SCA: Portable Automated Deployment and Management of Cloud Applications’.
In: Advanced Web Services. Springer New York, pp. 527–549.

Bocchi, E., M. Mellia and S. Sarni (2014). ‘Cloud storage service benchmarking:
Methodologies and experimentations’. In: Proceedings IEEE International Confer-
ence on Cloud Networking (CloudNet14), pp. 395–400.

CAMP v1.1 (2014). [Online] Available: http://docs.oasis-open.org/camp/camp-
spec/v1.1/camp-spec-v1.1.pdf [Accessed 1st Apr. 2016].

Chanas, Stefan and Paweł Zieliński (2001). ‘Critical path analysis in the network
with fuzzy activity times’. In: Fuzzy Sets and Systems 122.2, pp. 195–204.

Chen, Jiongze, Ronald G Addie, Moshe Zukerman and Timothy D Neame (2015).
‘Performance evaluation of a queue fed by a Poisson Lomax Burst process’. In: IEEE
Communication Letter 19.3, pp. 367–370.

135

http://mesos.apache.org
http://samza.apache.org
http://spark.apache.org
http://storm.apache.org
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf

Chen, Shuang, Mohammadmersad Ghorbani, Yanzhi Wang, Paul Bogdan and Mas-
soud Pedram (2014). ‘Trace-Based Analysis and Prediction of Cloud Computing
User Behavior Using the Fractal Modeling Technique’. In: IEEE International Con-
gress on Big Data, pp. 733–739.

Ching, Avery, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis and Sambavi
Muthukrishnan (2015). ‘One Trillion Edges: Graph Processing at Facebook-scale’.
In: Proceedings VLDB Endow. 8.12, pp. 1804–1815.

Cormen, Thomas H (2009). Introduction to Algorithms. MIT press.

Di Martino, Beniamino, Giuseppina Cretella and Antonio Esposito (2015). ‘Cloud
Portability and Interoperability’. In: Cloud Portability and Interoperability. Springer
Briefs in Computer Science. Springer International Publishing, pp. 1–14.

Dick, Scott, Omolbanin Yazdanbaksh, Xiuli Tang, Toan Huynh and James Miller
(2014). ‘An empirical investigation of Web session workloads: Can self-similarity be
explained by deterministic chaos?’ In: Information Processing & Management 50.1,
pp. 41–53.

DigitalOcean (2011). [Online] Available: https://digitalocean.com [Accessed 1st
Apr. 2016].

Docker (2013). [Online] Available: https://www.docker.com [Accessed 1st Apr.
2016].

Docker Swarm (2015). [Online] Available: https://www.docker.com/docker-swarm
[Accessed 1st Apr. 2016].

Donthi, Ranadheer, Ramesh Renikunta, Rajaiah Dasari and Malla Reddy Perati
(2014). ‘Self-Similar Network Traffic Modeling Using Circulant Markov Modulated
Poisson Process’. In: Fractals, Wavelets, and their Applications. Springer, pp. 437–
444.

Du, Cong and Suozhu Wang (2015). ‘Research on Mobile Web Cache Prefetching
Technology Based on User Interest Degree’. In: Proceedings of 3rd International Con-
ference on Logistics, Informatics and Service Science. Springer Berlin Heidelberg,
pp. 1253–1258.

Espadas, Javier, Arturo Molina, Guillermo Jiménez, Martín Molina, Raúl Ramírez
and David Concha (2013). ‘A tenant-based resource allocation model for scaling
Software-as-a-Service applications over cloud computing infrastructures’. In: Future
Generation Computing Systems 29.1, pp. 273–286.

Facebook Flux (2014). [Online] Available: https://facebook.github.io/flux
[Accessed 1st Apr. 2016].

136

https://digitalocean.com
https://www.docker.com
https://www.docker.com/docker-swarm
https://facebook.github.io/flux

Fankhauser, T., Q. Wang, A. Gerlicher and C. Grecos (2016). ‘Resource Dependency
Proceedingsssing in Web Scaling Frameworks’. In: IEEE Transactions on Services
Computing, pp. 1–1.

Fankhauser, T., Q. Wang, A. Gerlicher, C. Grecos andWang, X. (2015). ‘Web Scaling
Frameworks for Web Services in the Cloud’. In: IEEE Transactions on Services
Computing, pp. 1–1.

Fankhauser, T., Q. Wang, A. Gerlicher, C. Grecos and X. Wang (2014). ‘Web Scaling
Frameworks: A novel class of frameworks for scalable web services in cloud environ-
ments’. In: Proceedings IEEE International Conference on Communications (ICC14,
pp. 1414–1418.

Fehling, Christoph, Frank Leymann, Ralph Retter, Walter Schupeck and Peter
Arbitter (2014). ‘Cloud Computing Fundamentals and Composite Cloud Applic-
ation Patterns’. English. In: Cloud Computing Patterns. Springer Vienna. isbn:
9783709115671.

Fielding, Roy Thomas (2000). ‘Architectural styles and the design of network-based
software architectures’. PhD thesis. University of California, Irvine.

Fowler, Martin (2009). Eager Read Derivation. [Online] Available: http://martinfowler.
com/bliki/EagerReadDerivation.html [Accessed 1st Apr. 2016].

Fowler, Martin (2011). CQRS. [Online] Available: http://martinfowler.com/
bliki/CQRS.html [Accessed 1st Apr. 2016].

Fowler, Martin (2014). Microservices. [Online] Available: http://martinfowler.
com/articles/microservices.html [Accessed 1st Apr. 2016].

Gilbert, Seth and Nancy Lynch (2002). ‘Brewer’s Conjecture and the Feasibility
of Consistent, Available, Partition-tolerant Web Services’. In: SIGACT News 33.2,
pp. 51–59. issn: 0163-5700.

Go (2009). [Online] Available: https://golang.org [Accessed 1st Apr. 2016].

Google Cloud Dataflow (2015). [Online] Available: https://cloud.google.com/
dataflow [Accessed 1st Apr. 2016].

Google Cloud Deployment Manager (2015). [Online] Available: https://cloud.
google.com/deployment-manager [Accessed 1st Apr. 2016].

Google Cloud Platform (2008). [Online] Available: https://cloud.google.com/
compute [Accessed 1st Apr. 2016].

Google Container Engine (2014). [Online] Available: https://cloud.google.com/
container-engine [Accessed 1st Apr. 2016].

137

http://martinfowler.com/bliki/EagerReadDerivation.html
http://martinfowler.com/bliki/EagerReadDerivation.html
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://golang.org
https://cloud.google.com/dataflow
https://cloud.google.com/dataflow
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://cloud.google.com/compute
https://cloud.google.com/compute
https://cloud.google.com/container-engine
https://cloud.google.com/container-engine

Google Kubernetes (2014). [Online] Available: http://kubernetes.io [Accessed
1st Apr. 2016].

Guo, Yong, M. Biczak, A.L. Varbanescu, A. Iosup, C. Martella and T.L. Willke
(2014). ‘How Well Do Graph-Processing Platforms Perform? An Empirical Per-
formance Evaluation and Analysis’. In: IEEE Parallel and Distributed Proceedings
Symposium, pp. 395–404.

Haeupler, Bernhard, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen and Robert
E. Tarjan (2012). ‘Incremental Cycle Detection, Topological Ordering, and Strong
Component Maintenance’. In: ACM Transactions Algorithms 8.1, 3:1–3:33.

Han, Hyuck, Young Choon Lee, Woong Shin, Hyungsoo Jung, H.Y. Yeom and AY.
Zomaya (2012). ‘Cashing in on the Cache in the Cloud’. In: IEEE Transactions
on Parrallel and Distributed Systems 23.8, pp. 1387–1399. issn: 1045-9219. doi:
10.1109/TPDS.2011.297.

Han, Rui, Moustafa M Ghanem, Li Guo, Yike Guo and Michelle Osmond (2014).
‘Enabling cost-aware and adaptive elasticity of multi-tier cloud applications’. In:
Future Generation Computing Systems 32, pp. 82–98.

Haupt, F., F. Leymann, A. Nowak and S. Wagner (2014). ‘Lego4TOSCA: Compos-
able Building Blocks for Cloud Applications’. In: Proceedings IEEE International
Conference on Cloud Computing (CLOUD14), pp. 160–167.

Hewlett-Packard (1999). [Online] Available: http : / / ita . ee . lbl . gov / html /
contrib/WorldCup.html [Accessed 1st Apr. 2016].

Hummer, Waldemar, Benjamin Satzger and Schahram Dustdar (2013). ‘Elastic stream
processing in the Cloud’. In: Wiley Interdisciplinary Revision: Data Mining and
Knowledge Discovery 3.5, pp. 333–345.

IBM Bluemix (2014). [Online] Available: https://www.ibm.com/bluemix [Accessed
1st Apr. 2016].

IBM Containers for Bluemix (2014). [Online] Available: https://www.ng.bluemix.
net/docs/containers [Accessed 1st Apr. 2016].

IETF RFC2616 (1999). [Online] Available: https : / / tools . ietf . org / html /
rfc2616 [Accessed 1st Apr. 2016].

Internet Archive, a 501(c)(3) non-profit (1996). [Online] Available: http://httparchive.
org [Accessed 1st Apr. 2016].

Inzinger, C., S. Nastic, S. Sehic, M. Vögler, Fei Li and S. Dustdar (2014). ‘MADCAT:
A Methodology for Architecture and Deployment of Cloud Application Topologies’.

138

http://kubernetes.io
http://dx.doi.org/10.1109/TPDS.2011.297
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://www.ibm.com/bluemix
https://www.ng.bluemix.net/docs/containers
https://www.ng.bluemix.net/docs/containers
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
http://httparchive.org
http://httparchive.org

In: Proceedings IEEE International Symposium Service Oriented Systems Engineer-
ing (SOSE‘14), pp. 13–22.

Jacko, Julie A, Andrew Sears and Michael S Borella (2000). ‘The effect of network
delay and media on user perceptions of web resources’. In: Behaviour & Information
Technology 19.6, pp. 427–439.

Jiang, Jing, Jie Lu, Guangquan Zhang and Guodong Long (2013). ‘Optimal Cloud
Resource Auto-Scaling for Web Applications’. In: Proceedings IEEE/ACM Interna-
tional Symposium Cluster, Cloud and Grid Computing (CCGrid13), pp. 58–65.

Kalashnikov, D., A. Bartashev, A. Mitropolskaya, E. Klimov and N. Gusarova
(2015). ‘Cerrera: In-stream data analytics cloud platform’. In: 2015 Third Inter-
national Conference on Digital Information, Networking, and Wireless Communic-
ations (DINWC), pp. 170–175.

Katsaros, G., M. Menzel, A. Lenk, J. Rake-Revelant, R. Skipp and J. Eberhardt
(2014). ‘Cloud Application Portability with TOSCA, Chef and Openstack’. In: Pro-
ceedings IEEE International Conference on Cloud Engineering (IC2E14), pp. 295–
302.

Katsaros, Konstantinos V, George Xylomenos and George C Polyzos (2012). ‘Globe-
Traff: a traffic workload generator for the performance evaluation of future Internet
architectures’. In: IEEE International Conference on New Technology, Mobility and
Security (NTMS12). IEEE, pp. 1–5.

Kelley Jr, James E. and Morgan R. Walker (1959). ‘Critical-path Planning and
Scheduling’. In: ACM IRE-AIEE Computing Conference. ACM, pp. 160–173.

Kostoska, Magdalena, Marjan Gusev and Sasko Ristov (2014). ‘A New Cloud Ser-
vices Portability Platform’. In: Proceedings DAAAM International Symposium In-
telligent Manufacturing and Automation 69, pp. 1268–1275.

Krintz, C. (2013). ‘The AppScale Cloud Platform: Enabling Portable, Scalable Web
Application Deployment’. In: Journal IEEE International Computing 17.2, pp. 72–
75.

Kroß, Johannes, Andreas Brunnert, Christian Prehofer, ThomasA. Runkler and
Helmut Krcmar (2015). ‘Stream Processing on Demand for Lambda Architectures’.
In: Computer Performance Engineering. Vol. 9272. Springer International Publish-
ing, pp. 243–257. isbn: 9783319232669.

Le Scouarnec, N., C. Neumann and G. Straub (2014). ‘Cache Policies for Cloud-
Based Systems: To Keep or Not to Keep’. In: Proceedings IEEE International Con-
ference on Cloud Computing (CLOUD14), pp. 1–8.

139

libuv (2011). [Online] Available: https://github.com/joyent/libuv [Accessed 1st
Apr. 2016].

Little (1961). ‘A Proof for the Queuing Formula’. In: Operations Research 9.3,
pp. 383–387.

Loulloudes, Nicholas, Chrystalla Sofokleous, Demetris Trihinas, Marios D Dikaiakos
and George Pallis (2015). ‘Enabling Interoperable Cloud Application Management
through an Open Source Ecosystem’. In: IEEE Internet Computing 19.3, pp. 54–59.

LXC (2008). [Online] Available: https://linuxcontainers.org [Accessed 1st Apr.
2016].

Maheshwari, Ketan, Eun-Sung Jung, Jiayuan Meng, Vitali Morozov, Venkatram
Vishwanath and Rajkumar Kettimuthu (2016). ‘Workflow performance improve-
ment using model-based scheduling over multiple clusters and clouds’. In: Future
Generation Computing Systems 54, pp. 206–218.

Malcolm, D. G., J. H. Roseboom, C. E. Clark and W. Fazar (1959). ‘Application
of a Technique for Research and Development Program Evaluation’. In: INFORMS
Operations Research 7.5, pp. 646–669.

Mao, Ming and Marty Humphrey (2011). ‘Auto-scaling to Minimize Cost and Meet
Application Deadlines in Cloud Workflows’. In: Proceedings ACM International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC‘11). Seattle, Washington: ACM, 49:1–49:12.

Margara, Alessandro and Guido Salvaneschi (2014). ‘We Have a DREAM: Distrib-
uted Reactive Programming with Consistency Guarantees’. In: ACM Proceedings of
International Conference on Distributed Event-Based Systems, (DEBS14), pp. 142–
153.

Marshall, Paul, Kate Keahey and Tim Freeman (2010). ‘Elastic Site: Using Clouds to
Elastically Extend Site Resources’. In: Proceedings IEEE/ACM International Con-
ference on Cluster, Cloud and Grid Computing (CCGRID‘10), pp. 43–52. isbn:
9780769540399. doi: 10.1109/CCGRID.2010.80.

Masdari, Mohammad, Sima ValiKardan, Zahra Shahi and Sonay Imani Azar (2016).
‘Towards workflow scheduling in cloud computing: A comprehensive analysis’. In:
Journal of Networking and Computing Applications.

Mathematica, Wolfram (1988). [Online] Available: http://reference.wolfram.
com/language/ref/NonlinearModelFit.html [Accessed 1st Apr. 2016].

Merkel, Dirk (2014). ‘Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment’. In: ACM Linux Journal 2014.239. issn: 1075-3583.

140

https://github.com/joyent/libuv
https://linuxcontainers.org
http://dx.doi.org/10.1109/CCGRID.2010.80
http://reference.wolfram.com/language/ref/NonlinearModelFit.html
http://reference.wolfram.com/language/ref/NonlinearModelFit.html

Meusel, Robert, Sebastiano Vigna, Oliver Lehmberg and Christian Bizer (2014).
‘Graph structure in the web—revisited: a trick of the heavy tail’. In: Proceedings of
the International Conference on World wide web Computing, pp. 427–432.

Microsoft Azure (2010). [Online] Available: https://azure.microsoft.com [Ac-
cessed 1st Apr. 2016].

Namiot, Dmitry and Manfred Sneps-Sneppe (2014). ‘On Micro-services Architec-
ture’. In: International Journal of Open Information Technology 2.9, pp. 24–27.

Negrão, AndréPessoa, Carlos Roque, Paulo Ferreira and Luís Veiga (2015). ‘An
adaptive semantics-aware replacement algorithm for web caching’. In: Journal of
International Service and Applications.

NIST SP800-145 (2011). [Online] Available: http://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-145.pdf [Accessed 1st Apr. 2016].

node.js (2009). [Online] Available: https://nodejs.org [Accessed 1st Apr. 2016].

OASIS (1993). [Online] Available: https://www.oasis-open.org [Accessed 1st
Apr. 2016].

OpenGroup Cloud Computing Portability and Interoperability (2004). [Online] Avail-
able: http://www.opengroup.org/cloud/cloud/cloud_iop/cloud_port.htm
[Accessed 1st Apr. 2016].

OpenStack Heat (2014). [Online] Available: http://docs.openstack.org/developer/
heat [Accessed 1st Apr. 2016].

OpenVZ (2005). [Online] Available: https://openvz.org [Accessed 1st Apr. 2016].

Pang, Chaoyi, Junhu Wang, Yu Cheng, Haolan Zhang and Tongliang Li (2015).
‘Topological sorts on {DAGs}’. In: Information Processing Letters 115.2, pp. 298–
301.

Petcu, Dana, Georgiana Macariu, Silviu Panica and Ciprian Crciun (2013). ‘Port-
able Cloud applications-From Theory to Practice’. In: Future Generation Computing
Systems 29.6, pp. 1417–1430.

Petcu, Dana, BeniaminoDi Martino, Salvatore Venticinque, Massimiliano Rak, Tamás
Máhr, GorkaEsnal Lopez, Fabrice Brito, Roberto Cossu, Miha Stopar, Svatopluk
Šperka and Vlado Stankovski (2013). ‘Experiences in building a mOSAIC of clouds’.
In: Journal Cloud Computing 2.1, 12.

Pettersen, R., S.V. Valvag, A. Kvalnes and D. Johansen (2014). ‘Jovaku: Globally
Distributed Caching for Cloud Database Services Using DNS’. In: Proceedings IEEE
International Conference on Mobility Cloud Computing (MobileCloud14), pp. 127–
135.

141

https://azure.microsoft.com
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nodejs.org
https://www.oasis-open.org
http://www.opengroup.org/cloud/cloud/cloud_iop/cloud_port.htm
http://docs.openstack.org/developer/heat
http://docs.openstack.org/developer/heat
https://openvz.org

Poggi, Nicolas, David Carrera, Ricard Gavalda, Eduard Ayguadé and Jordi Torres
(2014). ‘A methodology for the evaluation of high response time on E-commerce
users and sales’. In: Information Systems Frontiers 16.5, pp. 867–885.

Qanbari, S., Fei Li and S. Dustdar (2014). ‘Toward Portable Cloud Manufacturing
Services’. In: Journal IEEE International Computing 18.6, pp. 77–80.

Qin, Xiulei, Wenbo Zhang, Wei Wang, Jun Wei, Hua Zhong and Tao Huang (2011).
‘On-line Cache Strategy Reconfiguration for Elastic Caching Platform: A Machine
Learning Approach’. In: Proceedings IEEE Annual Computing Software and Applic-
ations Conference (COMPSAC11), pp. 523–534.

RackSpace (1998). [Online] Available: https://rackspace.com [Accessed 1st Apr.
2016].

Rajabi, Ali and Johnny W Wong (2014). ‘Provisioning of Computing Resources for
Web Applications under Time-Varying Traffic’. In: IEEE International Symposium
on Modelling, Analytics & Simulation of Computing and Telecommunication Sys-
tems. IEEE, pp. 152–157.

Ramachandran, Arthi, Yunsung Kim and Augustin Chaintreau (2014). ‘I knew they
clicked when i saw them with their friends: identifying your silent web visitors on
social media’. In: ACM Proceedings of the Conference on Online Social Networks,
pp. 239–246.

Ray, Santanu Saha (2013). Graph Theory with Algorithms and Its Applications.
Springer, India.

Redis (2009). [Online] Available: http://redis.io [Accessed 1st Apr. 2016].

Salvaneschi, G., A. Margara and G. Tamburrelli (2015). ‘Reactive Programming: A
Walkthrough’. In: IEEE International Conference on Software Engineering (ICSE15).
Vol. 2, pp. 953–954.

Salvaneschi, Guido and Mira Mezini (2014). ‘Towards Reactive Programming for
Object-Oriented Applications’. In: Transactions on Aspect Oriented Software De-
velopment XI. Springer Berlin Heidelberg, pp. 227–261.

Sarhan, A., A.M. Elmogy and S.M. Ali (2014). ‘New Web cache replacement ap-
proaches based on internal requests factor’. In: Proceedings IEEE International Con-
ference on Computing Engineering Systems (ICCES14), pp. 383–389.

Sedgewick, Robert (2014). Algorithms II. Addison-Wesley Professional.

Songwattana, Areerat, Thanaruk Theeramunkong and Phan Cong Vinh (2014). ‘A
learning-based approach for web cache management’. In: Mobile Networks and Ap-
plications 19.2, pp. 258–271.

142

https://rackspace.com
http://redis.io

TOSCA v1.0 (2013). [Online] Available: http://docs.oasis-open.org/tosca/
TOSCA/v1.0/os/TOSCA-v1.0-os.html [Accessed 1st Apr. 2016].

Tung, T., Shaw-Yi Chaw, Qing Xie and Qian Zhu (2012). ‘Highly Resilient Sys-
tems for Cloud’. In: Proceedings IEEE International Conference on Web Services
(ICWS12), pp. 678–680. doi: 10.1109/ICWS.2012.66.

Visala, Kari, Ana Keating and Reduan H Khan (2014). ‘Models and tools for
the high-level simulation of a name-based interdomain routing architecture’. In:
IEEE Conference on Computing Communication Works. (INFOCOM WKSHPS14),
pp. 55–60.

W3C Web Service Architecture (2004). [Online] Available: http://www.w3.org/
TR/ws-arch [Accessed 1st Apr. 2016].

webscalingframeworks.org/graphs (2016). [Online] Available: http://webscalingframeworks.
org/graphs [Accessed 1st Apr. 2016].

webscalingframeworks.org/traces (2016). [Online] Available: http://webscalingframework.
org/traces [Accessed 1st Apr. 2016].

Wolke, Andreas and Gerhard Meixner (2010). ‘TwoSpot: A Cloud Platform for Scal-
ing Out Web Applications Dynamically’. In: Towards a Service-Based Internet. Ed.
by Elisabetta Di Nitto and Ramin Yahyapour. Vol. 6481. Springer Berlin Heidelberg,
pp. 13–24.

Wu, Yingjun and Kian-Lee Tan (2015). ‘ChronoStream: Elastic Stateful Stream
Computation in the Cloud’. In: 2015 IEEE 31st International Conference on Data
Engineering (forthcoming).

Young, Greg (2010). CQRS Documents. [Online] Available: https://cqrs.files.
wordpress.com/2010/11/cqrs_documents.pdf [Accessed 1st Apr. 2016].

Zareian, S., R. Veleda, M. Litoiu, M. Shtern, H. Ghanbari and M. Garg (2015).
‘K-Feed - A Data-Oriented Approach to Application Performance Management in
Cloud’. In: 2015 IEEE 8th International Conference on Cloud Computing (CLOUD),
pp. 1045–1048.

Zhang, Zhizhong, Chuan Wu and David W.L. Cheung (2013). ‘A Survey on Cloud
Interoperability: Taxonomies, Standards, and Practice’. In: Journal ACM Perform-
ance Evaluation (SIGMETRICS13) 40.4, pp. 13–22.

Zukerman, Moshe, Timothy D Neame and Ronald G Addie (2003). ‘Internet traffic
modeling and future technology implications’. In: IEEE Joint Conference of Com-
puting and Communication Society (INFOCOM2003). Vol. 1, pp. 587–596.

143

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://dx.doi.org/10.1109/ICWS.2012.66
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-arch
http://webscalingframeworks.org/graphs
http://webscalingframeworks.org/graphs
http://webscalingframework.org/traces
http://webscalingframework.org/traces
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf
https://cqrs.files.wordpress.com/2010/11/cqrs_documents.pdf

Appendix A - List of Acronyms/Abbreviations

R2 Coefficient of Determination.

API Application Programming Interface.

ARDP asynchronous resource dependency processing.

CMMP Circulant Markov-Modulated Poisson.

CPU Central Processing Unit.

CQRS Command Query Responsibility Segregation.

CRUD Create Read Update and Delete.

DAG Directed Acyclic Graph.

DNS Domain Name System.

FARIMA Fractionally Autoregressive Integrated Moving-Average.

FBM Fractional Brownian Motion.

FDG Fuzzy Dependency Graph.

FPTE Forest of Processing Tree Extraction.

HMR Hit-Miss Ratio.

HTTP Hypertext Transfer Protocol.

IaaS Infrastructure as a Service.

IEA Incremental Edge Add.

IETF Internet Engineering Task Force.

IOPS Input/Output Operations Per Second.

IoT Internet of Things.

JSON JavaScript Object Notation.

LFU Least Frequently Used.

144

LPT longest-paths processing tree.

MIME Multipurpose Internet Mail Extensions.

MVI Minimum Viable Interfaces.

NIST National Institute of Standards and Technology.

NRMSE Normalised RMSE.

PaaS Platform as a Service.

PCP Partial Critical Paths.

PERT Program Evaluation and Research Task.

PLB Poisson Lomax Burst.

PPB Poisson Pareto Burst.

PRSM Permanent Resource Storage and Management.

RDB Resource Database.

RDP resource dependency processing.

REST Representational State Transfer.

RM requester mode.

RMSE Root-Mean-Square Error.

SaaS Software as a Service.

SD standard deviation.

SDG Service Based Dependency Graph.

SM sequencer mode.

SOA Service Oriented Architecture.

SPT shortest-paths processing tree.

SSH Secure Shell.

TP Traditional Processing.

URI Uniform Resource Identifier.

145

VCS Version Control System.

VM Virtual Machine.

W3C World Wide Web Consortium.

WAF Web Application Framework.

WRP Weighting Replacement Policy.

WSF Web Scaling Framework.

XML Extensible Markup Language.

146

Appendix B - Awards and Certificates

147

Appendix C - Pi-One Evaluation Cluster

The cluster was custom build with 42 Raspberry Pi - Model B computers and a
HP ProCurve 48 switch. The management and orchestration software shown on
the monitor is a web interface monitoring the status of the cluster that runs on a
separate additional node.

148

	Abstract
	Declaration
	Acknowledgements
	List of Publications
	1 Introduction
	1.1 Overview
	1.2 Research Aim and Objectives
	1.3 Project Overview and Technical Contributions
	1.4 Research Methodology
	1.5 Thesis Outline

	2 Background and Evaluation Platform
	2.1 Overview
	2.2 The Web
	2.2.1 Hypertext Transfer Protocol
	2.2.1.1 HTTP Request
	2.2.1.2 HTTP Response

	2.3 Web Sites
	2.4 Web Applications
	2.4.1 Back End
	2.4.2 Front End
	2.4.3 Web Evolution

	2.5 Web Services
	2.5.1 Service Oriented Architecture
	2.5.2 Architectural Styles
	2.5.2.1 Application Specific
	2.5.2.2 Representational State Transfer

	2.6 Web Scaling
	2.6.1 Horizontal and Vertical Scaling
	2.6.2 Cloud Computing

	2.7 Web Architecture Patterns
	2.7.1 Monolithic Architecture
	2.7.2 Microservice Architecture
	2.7.3 Traditional Approach

	2.8 Pi-One: Evaluation Platform
	2.8.1 Hardware and Software Construction
	2.8.2 Evaluation Setup
	2.8.3 Influence of Programming Framework
	2.8.4 Influence of Hardware
	2.8.5 Results

	2.9 Summary

	3 Related Work and Theoretical Foundations
	3.1 Overview
	3.2 Web Scaling Frameworks
	3.2.1 Platforms and Frameworks
	3.2.2 Auto Scaling Features of Cloud Providers
	3.2.3 Cloud Application Design Patterns

	3.3 Request Flow
	3.3.1 Caching Strategies and Policies
	3.3.2 Performance Modelling
	3.3.3 Event Stream Processing Platforms and Frameworks

	3.4 Resource Dependency Processing
	3.4.1 Job and Workflow Scheduling
	3.4.2 Graph Processing Platforms
	3.4.3 Reactive Programming
	3.4.4 Web Service Measures
	3.4.5 Traffic Modelling

	3.5 Cloud Portability and Interoperability
	3.5.1 Portability and Interoperability
	3.5.2 Cloud Application Deployment and Management Platforms
	3.5.3 Containers and Cluster Orchestration Frameworks

	3.6 Open Research Questions
	3.7 Theoretical Foundations
	3.8 Summary

	4 Conceptual Architecture Design
	4.1 Overview
	4.2 Proposed Architecture Overview and Design Goals
	4.2.1 Design Goals
	4.2.2 Proposed Architecture Overview

	4.3 Applied Cloud Architecture Design Patterns
	4.3.1 Provider Adapter Pattern
	4.3.2 Managed Configuration Pattern
	4.3.3 Elastic Manager Pattern
	4.3.4 Command Query Responsibility Segregation and Flux Pattern
	4.3.5 Watchdog Pattern
	4.3.6 Microservice Architecture Pattern

	4.4 Modules Specification
	4.4.1 Storage Module
	4.4.2 Metrics Module
	4.4.3 Watcher Module
	4.4.4 Resilience Module
	4.4.5 Actions Module
	4.4.6 Provision Module
	4.4.7 Interface Module
	4.4.8 Worker Module

	4.5 Scaling Parameters
	4.5.1 Component Parameters
	4.5.2 System Parameters
	4.5.3 Traffic Parameters

	4.6 Minimum Viable Interfaces
	4.6.1 Component Interface
	4.6.1.1 Metrics Interface
	4.6.1.2 Provision Interface

	4.6.2 Framework Interface
	4.6.2.1 Configuration Interface
	4.6.2.2 Parameter Interface
	4.6.2.3 Action Interface

	4.6.3 Application Interface
	4.6.3.1 Deployment Interface
	4.6.3.2 Request Flow Interface

	4.7 Discussion
	4.8 Summary

	5 Request Flow Optimisation Scheme
	5.1 Overview
	5.2 Motivations and Objectives
	5.3 Permanent Resource Storage and Management Pattern
	5.3.1 Motivation
	5.3.2 Proposed Pattern
	5.3.3 Advantages

	5.4 Proposed Scheme Implementation
	5.4.1 Traditional and Proposed Scheme Comparison
	5.4.2 Request Flow
	5.4.3 Resource and Dependency Processing Scheme
	5.4.3.1 Synchronous and Asynchronous Processing Phase
	5.4.3.2 Processing Scheme

	5.4.4 Resource Interface
	5.4.4.1 Storage Interface
	5.4.4.2 Meta Interface

	5.5 Analytical Performance Modelling
	5.5.1 Performance Goals
	5.5.2 Component Models
	5.5.2.1 Parameters
	5.5.2.2 Delay Factors
	5.5.2.3 Maximum Request Flow
	5.5.2.4 Machines for Target Flow

	5.5.3 Composition Models
	5.5.3.1 Parameters
	5.5.3.2 Components and Subsystems
	5.5.3.3 Maximum Request Flow
	5.5.3.4 Machines for Target Flow
	5.5.3.5 Linear Regression for Machines for Target Flow

	5.5.4 Performance Comparison
	5.5.4.1 Relative Average Machine Reduction
	5.5.4.2 Break-Even Point for Dependency Processing

	5.5.5 Performance Optimisation
	5.5.5.1 Optimal Concurrency Range
	5.5.5.2 Performance-Concurrency-Width Triplet

	5.6 Empirical Performance Evaluation
	5.6.1 Component Models Evaluation
	5.6.1.1 Metrics
	5.6.1.2 Network Delay
	5.6.1.3 Request Size Delay
	5.6.1.4 Processing Delay

	5.6.2 Composition Models Evaluation
	5.6.2.1 Chained Composition
	5.6.2.2 Distributed Composition

	5.6.3 Real-World Application Evaluation
	5.6.3.1 Trip Planner
	5.6.3.2 Social Network
	5.6.3.3 FIFA Soccer Worldcup 98 Website
	5.6.3.4 Extracted Application Metrics
	5.6.3.5 Results

	5.7 Discussion
	5.8 Summary

	6 Resource Dependency Processing
	6.1 Overview
	6.2 Motivations and Objectives
	6.3 Resource Dependency Measurements
	6.3.1 Resource Vertices
	6.3.1.1 Processing & Read Vertices

	6.3.2 Dependency Edges
	6.3.3 Graph Measures
	6.3.3.1 Dependency Depth
	6.3.3.2 Dependency Degree
	6.3.3.3 Read-Processing Vertex Ratio
	6.3.3.4 Cluster Count
	6.3.3.5 Cluster Size
	6.3.3.6 Sparsity

	6.4 Processing Algorithms
	6.4.1 Evaluation
	6.4.2 Shortest-Path Approach
	6.4.2.1 Results

	6.4.3 Longest-Path Approach
	6.4.4 A Forest of Processing Trees
	6.4.4.1 Time Complexity

	6.4.5 Forest of Processing Trees Extraction Algorithms
	6.4.5.1 Negated Bellman-Ford
	6.4.5.2 Topological Sort with Dynamic Programming
	6.4.5.3 Results

	6.5 Dependency Analysis
	6.5.1 Correlations with Processing Duration
	6.5.1.1 Edge Count
	6.5.1.2 Dependency Degree
	6.5.1.3 Dependency Depth
	6.5.1.4 Cluster Count
	6.5.1.5 Cluster Size

	6.5.2 Regressions for Processing Duration
	6.5.2.1 Cluster Size Based
	6.5.2.2 Depth Based

	6.6 Service Generation
	6.6.1 Parameters
	6.6.1.1 Dependency Graph Based
	6.6.1.2 Traffic Based

	6.6.2 Service Based Graph Generation
	6.6.2.1 Service Structure Graphs
	6.6.2.2 Parameter Extraction
	6.6.2.3 Algorithm

	6.6.3 Fuzzy Graph Generation

	6.7 Performance Modelling
	6.7.1 Processing Duration
	6.7.1.1 Traditional Processing
	6.7.1.2 Resource Dependency Processing

	6.7.2 Processing Duration Delta
	6.7.3 Relative Performance Improvement
	6.7.4 Break-Even Points for Processing Duration

	6.8 Performance Evaluation
	6.8.1 Aggregated Performance
	6.8.1.1 Implementations
	6.8.1.2 Request Modes
	6.8.1.3 Empirical Data and Modelled Data
	6.8.1.4 Combined Case Results
	6.8.1.5 Best Case Results
	6.8.1.6 Worst Case Results
	6.8.1.7 Average Case Results
	6.8.1.8 Model Fits

	6.8.2 Structure Based Performance
	6.8.2.1 Performance Results
	6.8.2.2 Mapping to Real-World Structures

	6.9 Discussion
	6.10 Summary

	7 Cloud Portable and Interoperable Prototype Implementation and Evaluation
	7.1 Overview
	7.2 Motivations and Objectives
	7.3 Prototypical Implementation
	7.3.1 Cloud Providers with Linux Container Support
	7.3.1.1 Docker Container Engine
	7.3.1.2 Amazon Elastic Container Service (ECS)
	7.3.1.3 Google Container Engine
	7.3.1.4 IBM Bluemix Containers

	7.3.2 Prototype Components
	7.3.3 Prototype Modules

	7.4 Web Application Integration
	7.4.1 LinkR Web Application
	7.4.2 Adaptations for Integration into a WSF
	7.4.3 Service Structure Graph Analysis
	7.4.4 Dependency Graph Injection and Resource Push
	7.4.5 Resource Index Generation

	7.5 Processing Cost and Storage Space Modelling
	7.5.1 Processing Cost
	7.5.2 Break-Even Point for Processing Cost
	7.5.3 Storage Space

	7.6 Processing Cost and Storage Space Evaluation
	7.6.1 Evaluation Data
	7.6.2 Results

	7.7 Discussion
	7.8 Summary

	8 Conclusions and Future Work
	8.1 Overview
	8.2 Proposed Solutions
	8.3 Major Findings
	8.4 Contributions to Knowledge
	8.5 Limitations
	8.6 Future Work

	List of References
	Appendix A - List of Acronyms/Abbreviations
	Appendix B - Awards and Certificates
	Appendix C - Pi-One Evaluation Cluster

