A novel class of frameworks for scalable web services in cloud environments

Thomas Fankhauser, Qi Wang, Ansgar Gerlicher, Christos Grecos, Xinheng Wang

University of the West of Scotland
Stuttgart Media University

fankhauser@hdm-stuttgart.de
background

traffic

\[t \]
challenges
challenges

+ modularized and distributed web applications
 who manages the distribution components?

+ application logic vs. hosting logic
 how much does the app need to know?

+ scaling considerations
 when to implement scaling?

+ performance prediction
 how much of what components are / would be needed?
There is a lot of relevant research for each component

+ but, we propose to combine those complementary components to a predictable, composed system

+ general concept

 web scaling frameworks

+ prototype

 mathematical model and empirical data
web scaling frameworks
web scaling frameworks

- caching
- queueing
- sharing
- events
- error handling
- scaling
- replication
- validation
- data model
- logic
- user interface
- navigation
web scaling frameworks

web scaling framework

web application framework

http
web scaling frameworks

+ take over scaling
 separate application logic from hosting logic

+ predict and manage performance
 monitor and control

+ connect to existing web application frameworks
 http as interface, not a replacement
prototype
prototype
processing sub-system

load balancer → server → cache → queue → worker → app

+ modifying requests
POST, PUT, DELETE, …
prototype
read sub-system

load balancer

server

cache

worker

app

+ read-only requests

GET, HEAD

events
Caching everything is impossible

+ but, for most applications it isn’t…

+ application design matters
 design for cacheability

+ fast cloud storage is available
 storage is cheaper than compute units

+ post-processing
 mechanism that keeps resource dependencies updated
+ worker and app are on the same host
 connect web scaling framework and web application framework

+ worker offers interface to app
 register dependency, push content, …

+ application declares resource dependencies
 synchronous and asynchronous dependencies

+ worker ensures updates of dependencies
 optimises and resolves update tree
prototype
post-processing example

+ app: create blog post dependencies
 synchronous: /index
 asynchronous: /sitemap

+ worker: POST /posts
 1. sends request to app
 2. receives and stores sync. and async. dependencies
 3. pushes updates to the cache
 4. recursively resolves sync. dependencies
 5. forwards response to event system … client
 6. recursively resolves async. dependencies
evaluation
evaluation

+ mathematical model
 component delays and sub-systems

+ cache / processing ratio (CPR)
 traffic distribution ratio between 1 and 0

+ scaled version vs. normal version
 web scaling framework + web application framework vs. web application framework

+ empirical data collection
 single machine scope and multi-machine scope
evaluation
+ mathematical model: analytical prediction

normal version does not consider CPR

on a single machine

all components on same host

worst case

best case

on multiple machines

44% fewer machines
evaluation

+ **empirical data collection**

 normal version vs. scaled version - single machine scope

V_n: normal version vs. V_s: scaled version

+ 81 parameter tuples

 cpr, da, s, u

+ expected the cpr to be highly influential

 V_s expected to be better for tuples where $CPR = 1.0$
 V_n expected to be better for tuples where $CPR = (0.5, 0.0)$

+ hypothesis: In 33% V_s performs better than V_n

 accepted with a result of 37%

model vs. data

97.6% prediction fit

CPR = (1.0, 0.5, 0.0)
$da = (0.0, 0.5, 1.0)$
$s = (25, 50, 100)$
$u = (0, 5, 10)$

$RMSE = 232$

(Predicted - Measured) RPS
in progress
in progress

+ empirical data collection
 multi-machine cloud scope
 raspberry pi cluster of 42 machines

+ further implementations
 web scaling frameworks
thank you!
web scaling frameworks

A novel class of frameworks for scalable web services in cloud environments

Thomas Fankhauser, Qi Wang, Ansgar Gerlicher, Christos Grecos, Xinheng Wang

University of the West of Scotland
Stuttgart Media University

fankhauser@hdm-stuttgart.de